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ARTICLE

ne of the most devastating pandemics of human history

was the second plague pandemic, which began with the

infamous Black Death (BD, 1346-1353 AD) and con-
tinued with recurrent outbreaks in Europe, the Near East and
North Africa until the 18th century ADL2, Its causative agent,
Yersinia pestis>, is a highly virulent bacterium that causes bubo-
nic, pneumonic, and septicaemic plague and today is maintained
among wild rodent populations in eastern Europe, Asia, Africa
and the Americas*-®.

The first historically documented outbreaks of the second
pandemic seem to have occurred in 1346 in the Lower Volga and
Black Sea regions!”. Subsequently, the bacterium dispersed
through the rest of Europe over the next seven years, causing
reductions in the human population estimated to be as high as
60%!. Recent studies on ancient Y. pestis DNA from medieval
plague victims have contributed insights into these initial stages
of the pandemic. Specifically, mid-14th-century Y. pestis genomes
reconstructed from Saint-Laurent-de-la-Cabrerisse (southern
France)®, Barcelona (Spain)?, London (England)!? and Oslo
(Norway)® were shown to be identical, suggesting the rapid dis-
persal of a single strain across Europe during the BD. Recently,
the analysis of an additional low-coverage genome from Siena,
Italy (BSS31)3, revealed the purported existence of Y. pestis strain
diversity during the BD, a possibility that should be further
explored.

After the BD, plague was a common scourge in Europe as
evidenced by the thousands of recorded epidemics it supposedly
caused between 1353 and the late 18th century>!!. Whether these
were caused by multiple introductions of the disease from an
Asian source or by its local persistence in Europe is currently a
topic of debate®12-14 While data from climatic proxies are
considered as supportive of the former hypothesis!2, genetic
evidence is interpreted in both directions®%13, To date, ancient Y.
pestis genomes from epidemics closely succeeding the BD in
Europe have been sequenced from late-14th-century individuals
in Bergen op Zoom (Netherlands), London (England) and the
Middle Volga region of Russia. They cluster on a phylogenetic
lineage that is a precursor to strains associated with the 19th-
century third plague pandemic®!>16, and thus provide a link
between medieval and modern plague. Moreover, Y. pestis gen-
omes recovered from Ellwangen, Germany (1485-1627 calAD),
and the Great Plague of Marseille in France (L’Observance,
1720-1722 AD) cluster on an independent lineage, here termed
the “post-BD” lineage, that is to date unidentified among modern
Y. pestis diversity. Both lineages descended from the strain
associated with the BD and, hence, likely represent plague’s legacy
in or around Europe after 1353.

At present, the source of the second pandemic and the route
that the bacterium followed during its course of entry into Europe
remain hypothetical since genomic data from early outbreaks in
western Russia have thus far been elusive. In addition, the limited
number of published ancient Y. pestis genomes™1%:14 challenges
our ability to construct hypotheses regarding the number of
lineages responsible for the numerous post-BD outbreaks in
Europe>!! and whether they derived from a single or multiple
disease reservoirs. Here, we take steps to overcome these limita-
tions by expanding the number of available Y. pestis genomes
from multiple time periods and locations in order to gain addi-
tional knowledge on the early stages of the second pandemic, and
to study the genetic diversity of the bacterium present in Europe
after the BD. Additionally, we present a reanalysis of recently
published data from the same time period®. Our results support
the entrance of Y. pestis into Europe through the east during the
initial wave of the pandemic and consistently demonstrate an
absence of genetic diversity in the bacterium during the BD.
Moreover, our genomic analysis of post-BD outbreaks from

central and western Europe suggests the local diversification of an
extinct Y. pestis lineage between the late-14th and 18th centuries
that may have resided in more than one disease reservoir.

Results

Sample screening for signatures of Y. pestis DNA. Two
approaches were used for the assessment of Y. pestis DNA in
tooth specimens (n = 206) from ten archaeological sites spanning
the 14th-17th centuries AD in Europe (Fig. 1, Supplementary
Figs. 1-10 and Supplementary Note 1). First, a qPCR screening
approach was employed for detection of the Y. pestis-specific
gene, pla, located on the pPCP1 plasmid!” in 180 specimens from
the cities of London (n=40) in England, Toulouse (1 =42) in
France, Brandenburg an der Havel!3 (n = 3), Landsberg am Lech
(n=10), Manching-Pichl!3> (n=28), Nabburg (n=12) and
Starnberg (n =3) in Germany, Laishevo (n=10) in the Volga
region of Russia, and Stans (n = 32) in Switzerland. Extracts from
41 teeth across these sites tested positive for pla (Supplementary
Table 1). All extraction negative controls were free of amplifica-
tion products. Amplification products from putatively positive
individuals were not sequenced, as the presence of Y. pestis was
subsequently assessed through whole-genome capture and high-
throughput Illumina sequencing.

In addition, shotgun Next Generation Sequencing (NGS) data
from individuals unearthed at the New Museums site (Augusti-
nian Friary) in Cambridge (n=26) were screened for Y. pestis
with the MEGAN alignment tool (MALT)!8 (see Methods). The
output was post-processed within the pathogen screening pipeline
HOPS!9. The assessment of shotgun NGS reads produced from
non-uracil-DNA-glycosylase (non-UDG) libraries revealed the
potential presence of Y. pestis DNA in four individuals
(Supplementary Table 2, Supplementary Fig. 11).

Y. pestis in-solution capture and whole-genome reconstruction.
We prepared UDG-treated libraries?®?! from all putatively
positive samples and used a Y. pestis whole-genome in-solution
capture approach?? combined with high-throughput sequencing
for the retrieval of 1,299,105-79,055,317 raw reads per sequenced
library. All data were mapped against the Y. pestis CO92 reference
genome (NC_003143.1)>. This resulted in 86,278-3,822,030
unique mapping reads yielding 1.1-80.1-fold coverage across 34
individuals that span the time transect between the 14th and 17th
centuries in Europe (Supplementary Table 3). More specifically,
we could retrieve two Y. pestis genomes from Cambridge (Eng-
land), five from London (England), one from Toulouse (France),
three from Nabburg, two from Manching-Pichl'3, one from
Starnberg, one from Landsberg am Lech, two from Brandenburg
an der Havel!3 (all from Germany), two from Laishevo (Russia)
and 15 from Stans (Switzerland). Of those, 24 isolates showed at
least 50% of the reference genome covered at 5-fold (Table 1),
which allowed for their confident inclusion in phylogenetic
analysis. In addition, we nearly tripled the genomic coverage of
the published “549_0O” isolate from Ellwangen, Germany (now
reaching 14.1-fold), which was previously processed by array-
based capture using a different probe design® (Supplementary
Table 3).

Y. pestis phylogenetic reconstruction. To infer genetic rela-
tionships between the new and previously published Y. pestis
isolates, we constructed phylogenies using the maximum like-
lihood (ML) method, allowing for up to 3% missing data (97%
partial deletion) to accommodate lower coverage genomes. As a
reference dataset, we used 233 modern isolates?3-27 (as listed in
ref. 28), which represent most of the published Y. pestis genetic
diversity. In addition, we included previously published second
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Fig. 1 Archaeological site locations and chronologies. a Map showing the geographic locations of archaeological sites from which second pandemic (14th-
to 18th-century AD) Y. pestis genomes have been reconstructed (>1-fold). The number (n) of genomes obtained from each site is shown in brackets.
Locations of previously published genomes appear in triangles, whereas genomes that are newly described in this study appear in circles (labels in bold).
Base map purchased from [vectormaps.de]. b Specimen chronologies combining archaeological and radiocarbon dates of previously published and new
second plague pandemic isolates (see Supplementary Note 1 and Supplementary Table 3)

pandemic isolates (n = 15)3-1014, 3 6th-century AD isolate from
Germany??, a 2nd- to 3rd-century AD isolate from the Tian Shan
mountains in Kyrgyzstan3, as well as three Bronze Age isolates
from the Altai and Volga regions®!32 (Supplementary Fig. 12).
All newly reconstructed genomes appear on Branch 1 and are
closely related to the previously published second pandemic
isolates from Europe (Fig. 2), thus confirming their authenticity.
In addition, they seem to represent a diverse group of strains that
were present across Europe between the 14th and 18th century
AD (Fig. 2, Supplementary Data 1). A number of genomes
(NABO005, BRA003, STNO011 and STN004) were excluded from
further analyses as they showed evidence of excess heterozygosity,
which is atypical of bacterial genomes (Supplementary Fig. 13).
This phenomenon likely arises from enrichment of non-target
DNA stemming from closely related organisms, an issue
frequently encountered in ancient metagenomic datasets!8-29:33,
Moreover, these genomes had notably longer branch lengths in
comparison to other contemporaneous isolates from the same
archaeological contexts (Supplementary Fig. 14). Their assess-
ment using the recently developed SNPEvaluation tool?8 (see
Methods) classified their private SNP calls as false-positive,
suggesting that the observed branch lengths are erroneous
(Supplementary Data 2). Similarly, the previously published
SLC1006 and BSS31 genomes® were also excluded from further
analyses as they also showed high heterozygosity (Supplementary
Fig. 15) and exceedingly longer branch lengths compared to other
14th-century Y. pestis genomes (Supplementary Figs. 14 and 16).
Our phylogenetic reconstruction shows that the LAI009 isolate
from Laishevo is ancestral to the BD isolates from southern,
central, western and northern Europe, as well as to the previously

published late 14th-century isolates from London (6330)!0 and
Bolgar City® (Fig. 2). This genome possesses only one derived
SNP distinguishing it from the NO7 polytomy that gave rise to
Branches 1-4 (Fig. 2; Supplementary Data 1)%3. Since all other
second pandemic genomes share an additional derived SNP on
Branch 1, we interpret LAI0O09 as the most ancestral form of the
strain that entered Europe during the initial wave of the second
pandemic that has been identified to date. Regarding the central
and western European genomes, NAB003 from Nabburg does not
show differences compared to previously published BD genomes
from London and Barcelona®?. In addition, NMS003 from
Cambridge was genotyped based on inspection of its SNP profile,
despite it not fulfilling the genomic coverage criteria for inclusion
in our phylogenetic analysis (Supplementary Table 3), as its
archaeological context makes it distinct from other Y. pestis-
positive individuals from the same site (see Supplementary
Note 1). As a result, SNP inspection classified it as potentially
identical to other BD genomes (Supplementary Data 3). By
contrast, certain isolates associated with the BD period are
seemingly distinct. For example, TRP002 from Toulouse, which
dates to 1347-1350 based on archaeological evidence, forms its
own unique branch (Fig. 2; Supplementary Data 1). Qualitative
assessment of eight unique SNPs in TRP002 with SNPEvalua-
tion28 classified them as potential false-positives (see Methods,
Supplementary Data 2). In addition, after visual inspection, all
such variants appear in regions of the genome where reads from
diverse sources seem to be mapping (Supplementary Fig. 17) and,
therefore, were considered to be of exogenous origin. Similarly,
we assessed one unique SNP identified in our re-analysis of the
recently published OSL-1 genome from Oslo, Norway® (Fig. 2).
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kelihood phylogeny was generated allowing for up to 3% missing data (97%

partial deletion) and considering a total of 6,058 single nucleotide polymorphisms (SNPs). The image shows a graphical representation of Branches 1-4
(see Supplementary Fig. 12 for a complete phylogeny), to emphasise the phylogenetic positioning of the new and previously published second pandemic
strains (labels of new 14th- to 17th-century strains appear in bold). Dashed branches denote uncertainty in the private SNP calls of the respective genomes.
Sub-clades of published genomes are collapsed to enhance tree visibility. Numbers (n) in brackets indicate the number of strains represented in each

collapsed branch. Node support was estimated using 1,000 bootstrap itera

tions. Nodes that have bootstrap values of >95 are indicated by asterisks (*).

Scale denotes substitutions per site. Geographic abbreviations of modern strain isolation locations are as follows: China (CHN), United States of America

(USA), Madagascar (MDG), India (IND), Myanmar (MNM), Congo (COG),

Uganda (UGA), Mongolia (MNG), Nepal (NPL), Iran (IRN), Kazakhstan (KAZ),

Kyrgyzstan (KGZ), Tajikistan (TJK), Armenia (ARM), Georgia (GEO), Azerbaijan (AZE), Uzbekistan (UZB), Turkmenistan (TKM), Russia (RUS) and

unspecified regions of the Former Soviet Union (FSU)

Visual inspection revealed it as a low-quality C-to-T transition
that could be confined by aDNA damage (Supplementary Fig. 18).
Finally, despite exclusion of BSS31 (Siena, Italy) from phyloge-
netic analysis, two previously identified unique SNPs in this
genome were manually inspected, since they were presented as
evidence for Y. pestis genetic diversity in Europe during the BDS.
Importantly, BLASTn analysis of reads overlapping those regions
(Supplementary Fig. 18, Supplementary Data 4 and 5) showed a
100% identity to environmental or other enteric bacterial species,
but not to Y. pestis. We, hence, conclude that apart from LAI009
all reconstructed genomes associated with the initial pandemic
wave have identical genotypes. In addition, we note that
structural rearrangements could provide alternative means of
genetic diversity. Although architectural differences are vastly
abundant among modern Y. pestis genomes>4, their assessment in
ancient Y. pestis is limited by the short read aDNA data
produced here.

We find a number of genomes grouping with the previously
described “post-BD” lineage together with published strains from
Ellwangen (ELW098/549_0), Germany (1486-1630)°, and Mar-
seille, France (1720-1722)!4, which are descended from the
European BD isolates (Fig. 2; Supplementary Data 1). Here, we
identify the earliest evidence of this lineage in a 14th-century
isolate from Manching-Pichl (MAN)!3 (see Supplementary
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Note 1), which is followed by the more derived 15th- to 17th-
century isolates from Starnberg (STA), Landsberg (LBG), Stans
(STN) and Cambridge (NMS), as well as the 17th-century
Brandenburg an der Havel (BRA)!? and London (BED), all of
which provide further evidence for plague’s continuous presence
in Europe after the BD. Of note, we retrieved eight nearly
identical genomes from Stans (STN, maximum one SNP
difference in two of eight genomes; mean SNP distance d =0),
and together with the four identical genomes from 17th-century
London (BED) (d=0), the five previously published nearly
identical genomes from Marseille (OBS, maximum one SNP
difference in one of five genomes, d = 0), and the seven identical
BD isolates from various regions in Europe (d =0), our results
demonstrate low genetic diversity of the bacterium within local
outbreaks and/or major epidemics of the second pandemic. In
addition, we find that this “post-BD lineage” gave rise to (at least)
two distinct clades within Europe, with the Ellwangen isolate
being positioned closest to an apparent population split (Fig. 2).
From this divergence, one clade gave rise to the strains associated
with outbreaks in Germany and Switzerland (15th-17th century
AD), and the second encompassed strains from 17th-century
London (BED) and 18th-century Marseille (OBS). Notably, these
two clades show dissimilar rates of substitution accumulation. For
example, the mean SNP distance between the Ellwangen genome
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Fig. 3 Substitution rate variation across the Y. pestis Branch 1. The figure presents a maximum clade credibility (MCC) phylogenetic tree generated using
BEAST v1.885 (rooted with 2.MED KIM10—outgroup not shown). The tree was viewed in FigTree v1.4 (http:;//tree.bio.ed.ac.uk/software/figtree/), and
modified so that branch colours represent mean substitution rates (substitutions per site per year). The tree depicts the substitution rate variation across
Branch 1 of the Y. pestis phylogeny, which ranges from 2.09E-7 (highest-red) to 4.95E-9 (lowest-blue) substitutions per site per year (see rate key). The
isolates used for this analysis overlap with the ones used for the SNP and maximum likelihood phylogenetic analysis (see Supplementary Fig. 12), with the
exception of the TRPOO2 and OSL1 genomes since their private SNP calls are likely affected by environmental contamination and other representative
genomes exist in our dataset from the BD time period (1346-1353 AD). Labels of genomes associated with the second and third plague pandemics appear
in bold. The mean substitution rate across the tree (including 2.MED KIM10) was calculated to 2.85E-8 substitutions per site per year. Lengths of branches
are scaled to represent sample ages, and the depicted Branch 1 sequences are estimated to represent 731 years (95% HPD: 672-823) of Y. pestis evolution.
The time scale is shown in years before the present (BP), where present denotes the most recently isolated modern Y. pestis strain (year 2005)

(ELW098/549_0) and the London (BED) genomes (d =45) is
double that observed between Ellwangen and Brandenburg (BRA,
d=122), despite an assumption of them being contemporaneous
(early 17th century AD) based on archaeological dating (Fig. 2;
Supplementary Table 1; Supplementary Note 1).

Analysis of substitution rate variation in Y. pestis. We used the
Bayesian framework BEAST v1.8 in order to make an assessment
of substitution rate variations across the genealogy of Branch 1
(n = 80), retaining high-quality second pandemic Y. pestis gen-
omes and using available calibration points in our modern and

ancient datasets (Supplementary Data 6). Previous studies have
demonstrated that overdispersion among Y. pestis branch lengths
is unlikely a result of natural selection, and have rather suggested
a link between rate acceleration and geographic expansion of
certain lineages during epidemic spread!®23. Our analysis based
on the coalescent skyline model (Fig. 3, Supplementary Fig. 19)
suggests an over 40-fold difference between the fastest and
slowest substitution rates identified on Branch 1 (Fig. 3). In
particular, we observe the fastest rates in three internal branches
(Fig. 3). The first spans the genetic distance between the strains
from Ellwangen (549_O) and London (BED), and supports the
conflicting branch lengths of BED and BRA strains described
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Fig. 4 Assessment of chromosomal and gene-specific coverage in Y. pestis. a A comparison of genetic profiles was performed across newly reconstructed
and previously published second pandemic genomes (in red, orange, green and blue). Here, we show an assessment of the presence or absence of 80
previously defined3® potential virulence and evolutionary determinants across the Y. pestis chromosome. Published genomes from the Bronze Age
period3"32 (RISE509 and RT5), from the first pandemic2® (6th-century Altenerding 2148), from modern-day isolates (0.PE2, 0.PE4 and 1.0RI)23, as well as
Y. pseudotuberculosis IP32953¢0, are also shown for comparative purposes. The colour scale ranges from O (not covered—yellow) to 1 (entirely covered—
blue) according to the relative proportion of gene/locus covered. The heatmap was plotted in R version 3.4.182 using the ggplot2 package8°. Boxes marked
with “X" indicate genomic loci that were not part of the Y. pestis probe design when the respective isolates were captured®2°. Refer to Supplementary
Fig. 20 for presence/absence of virulence-associated genes across the pMT1, pPCP1 and pCD1 plasmids. b Chromosomal coverage plots made with the
Circos?0 software. The plots were constructed to a maximum coverage of 20-fold, and the average coverage was calculated over 3,000-bp windows.
Genomes are shown in chronological order from oldest (innermost circle) to youngest (outermost circle) as follows: LAIOO9, London BD 8124,/8291/11972
(BD representative), Ber45, Bolgar 2370, MANOOS8, STA001, NMS002, ELW098/549_0, LBGO02, STNO14, BRA0OO2, BED030, OBS137 and the reference
genome CO92. The outermost ring represents fluctuations in GC content (%) across CO92, where dark and light grey bars show deviations from the
genomic mean (47.6%) by at least one standard deviation

earlier (Fig. 3 and Supplementary Data 7). The second is the
branch leading to the 1.ANT strains isolated from Africa (Congo
and Uganda) (Fig. 3 and Supplementary Data 8). The broad
history of 1.ANT and the time period associated with its estab-
lishment in Africa are unknown, though an introduction from
Eurasia has been hypothesised®3°. The third, which displays the
fastest rate within the entire Branch 1, is the branch leading to 1.
ORI isolates (Fig. 3 and Supplementary Data 9), which is asso-
ciated with the global spread of Y. pestis via maritime routes
during the third plague pandemic (1894-1950s)!>16. Our results,
therefore, support the idea of faster substitution rates during

epidemic spread, here particularly noticeable for lineages known
to have expanded over wide geographic areas.

Analysis of virulence-associated genomic profiles. To investi-
gate the genomic profiles of all newly reconstructed genomes, we
analysed the presence or absence of potential virulence-associated
and evolutionary determinant genes located on the Y. pestis
chromosome (Fig. 4a) and plasmids (Supplementary Fig. 20)36:37,
in comparison to published representatives of ancient and mod-
ern strains. We find that the genetic profiles of some of the
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previously characterised historical strains are influenced by the
capture design used for their retrieval. Specifically, the second
pandemic genomes “Bolgar 2370” and “Barcelona 3031” (ref. %)
and the first pandemic genome “Altenerding 2148 (ref. 2%) seem
to lack coverage in certain Y. pestis-specific regions, since Yersinia
pseudotuberculosis was previously used as a probe-design tem-
plate for their enrichment®?® (Fig. 4a). Regarding the newly
reconstructed strains, we find that most possess all analysed genes
with the exception of the New Churchyard (BED) and Marseille
(OBS) strains that lack the magnesium transporter genes mgtB
and mgtC, as well as the Cambridge (NMS002) strain that is
lacking the inv gene (Fig. 4). While invasin is associated with
epithelial colonisation of Y. pseudotuberculosis and Yersinia
enterocolitica, it is known to have been inactivated in Y. pestis33.
By contrast, magnesium transporters are considered vital for Y.
pestis intracellular survival under low Mg?* conditions3?, such as
those encountered within macrophage phagosomes. Specifically
for Y. pestis, mgtB disruption has been associated with a decreased
ability for macrophage invasion resulting in its attenuated viru-
lence in mice®). Both mgtB and mgtC are present in all 233
modern Y. pestis genomes used in our comparative dataset. We
explored these gene deletions in greater detail using BWA-MEM
and identified them as part of a 49-kb missing region within the
BED and OBS genomes (1,879,467-1,928,869 on C0O92) (Fig. 4b,
Supplementary Fig. 21) flanked by an IS100 element immediately
following its downstream end, which is consistent with previously
characterised disruptions or losses of Y. pestis genomic regions via
insertion elements*!. Apart from mgtB and mgtC, this region
encompasses a set of 34 additional genes that code for both
characterised and hypothetical proteins, most of which seem to be
associated with phenotypic characteristics that appear inactivated
in Y. pestis such as motility and chemotaxis as well as few genes
associated with metabolism, structure synthesis and environ-
mental stress response (Supplementary Fig. 21, Supplementary
Table 4). In addition, the clade encompassing this deletion is
associated with some of the late outbreaks of the second plague
pandemic, i.e. during the 17th century in London, England (BED)
(see Supplementary Note 1), and during the 18th-century Plague
of Marseille, in France (OBS 1720-1722 AD)!4, which was one of
the last major epidemics that occurred in continental Europe*2.
Intriguingly, a nearly identical genomic deletion (45kb), also
including the mgtB and mgtC virulence-associated genes, was
recently identified in ancient isolates from France (LVC, LSD)28
sequenced from victims of the first plague pandemic (6th-8th
centuries AD)?8. These genomes are described elsewhere and date
within a wide temporal interval (550-650 AD), though based on
existing data they appear to be the youngest first pandemic iso-
lates sequenced to date?s.

Discussion

A series of studies have sufficiently demonstrated the preservation
of Y. pestis in ancient human remains from a wide temporal
transect8-10,14.22,29,31,32:43 * Thjs study presents an extensive
sampling of multiple European epidemic burials from the period
between the 14th and 17th centuries in order to gain a more
complete picture of Y. pestis’ genetic history during the second
plague pandemic. Here, we nearly triple the amount of genomic
data available from that time period (Fig. 1, Table 1 and Sup-
plementary Table 3) and integration with existing datasets reveals
key aspects regarding the initiation and progression of the second
plague pandemic in Europe.

Based on historical sources alone, it has been difficult to
determine the time at which Y. pestis first reached different parts
of western Russia’. A commonly accepted view dates its arrival in
the southwest, particularly in cities of Astrakhan and Sarai, in

1346144 with subsequent spread into southern Europe from the
Crimean peninsula. On the other hand, the dispersal of plague
into northwestern Russia (i.e. in the cities of Pskov and
Novgorod”#*) may have followed an alternative route via the
Baltic Sea, occurring at the end of the BD between 1351 and
13531744 Such a notion of plague’s expansion from northern
Europe eastwards is also supported by published ancient genomic
data from the late 14th-century Middle Volga region of Russia®,
though other scenarios may come to light with incorporation of
additional genomic and historical data. Importantly, through
analysis of our new strain from Laishevo (LAI009), which is
phylogenetically ancestral to all second pandemic strains
sequenced to date (Fig. 2), we provide evidence for the bacter-
ium’s presence in the same region, ~2000 km northeast of the
Crimean peninsula, prior to reaching southern Europe in
1347-1348! (currently represented by strains from Siena, Saint-
Laurent-de-la-Cabrerisse, Barcelona and Toulouse®®). These
results suggest that the NO7-derived SNP previously termed “p1”®
(Fig. 2, Supplementary Fig. 12), that is common to all other
second pandemic strains, was likely acquired within Europe
during the onset of the BD. In addition, given the proximity of
the LAIO09 genome to the NO7 node often associated with the
initiation of the BD (Fig. 2, Supplementary Fig. 12)?3, further data
will be necessary to accurately re-evaluate the geographic origin
of Branch 1. Previous analyses have proposed East Asia as the
mostly likely candidate for the N07 polytomy!0-23 (Fig. 2). Such
claims, however, cannot yet be verified given; (1) the apparent
East Asian sampling bias of modern isolates?>4>, (2) the lack of
molecular evidence from East Asia dating to the early 14th cen-
tury and (3) the scarcity of historical documentary sources from
this region describing precise disease symptoms*°. In addition,
recently published modern Y. pestis genomes from Central Asia
show a rich diversity in the local plague foci?®?7, and further
sampling from these regions has the potential to inform
hypotheses on plague movement and evolution.

The identification of low genomic diversity during the initial
wave of the second pandemic becomes particularly informative
when attempting to reconstruct the spread of plague after 1353.
Previous research based on climatic proxies'? as well as PCR#’
and genomic® data have proposed multiple introductory waves of
Y. pestis into Europe as the main source for the post-BD out-
breaks recorded until the 18th century. Here, using previously
published®-1%-14 and new whole-genome data from 20 archae-
ological sites, we identify that all genomes associated with post-
BD outbreaks in Europe derived from a single ancestral strain
that was present in southern, central, western and northern
Europe during the BD. We, therefore, interpret the current data
as supporting a single entry of Y. pestis during the BD, though
additional interpretations may arise through the discovery of
unsampled diversity in western Eurasia. Subsequent to its entry,
we observe the formation of two sister lineages (Fig. 2). The first
lineage is responsible for the bacterium’s possible eastward
expansion after the BD. It contains strains from late-14th-century
Bergen op Zoom, London (6330)1° and the city of Bolgar (2370)°,
as well as extant strains from Africa (1.ANT)*8, and, most
importantly, a worldwide set of isolates associated with the third
pandemic (1.ORI, 19th-20th centuries)!>1%23 (Fig. 2). The sec-
ond, here termed the “post-BD lineage”, is characterised by a
profound genomic diversity identified within Europe that seems
to have been restricted to the second pandemic, as no modern
descendants have been identified for this lineage to date. It is
represented by historical genomes isolated from 14th- to 18th-
century Germany (MAN, STA, ELW, LBG and BRA), Switzerland
(STN), England (NMS, BED) and France (OBS) (Fig. 2), sug-
gesting that it persisted in Europe or its vicinity and caused
infections over a wide geographic range. The fact that this lineage
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has no identified modern descendants is likely related to the
disappearance of plague from Europe in the 18th century, pos-
sibly due to extinction of local reservoirs, as previously
suggested”.

We find that the “post-BD lineage” gave rise to (at least) two
distinct clades that separate the strains identified in Central
Europe during the 15th-17th centuries, and those identified in
17th- to 18th-century England and France. Their distinction is
corroborated not only by their genetic and geographic separation
(Fig. 2), but also by potential differences in their genomic profiles
(Fig. 4) and substitution rates (Fig. 3). The clade that exhibits a
slower substitution rate is mainly represented by temporally and
genetically closely related isolates from Germany and Switzerland
(Fig. 2), which could indicate endemic circulation of the bacter-
ium in that region. Such an observation may be compatible with
the hypothesis of an Alpine rodent reservoir facilitating the
spread of plague in Central Europe after the BD*%, although a
possible sampling bias should be noted since the majority of our
data derive from this region. On the other hand, the clade that
exhibits a faster substitution rate (Fig. 3) appears to have had a
wider geographic distribution. Given that both Marseille and
London were among the main maritime trade centres in Europe
during that time, it is plausible that introduction of the disease in
these areas occurred via ships®’, although sources favouring local
epidemic eruptions also exist®l. Previous studies have demon-
strated that transmission of Y. pestis via steamships during the
19th century played a significant role in initial introduction of the
bacterium to several regions worldwide, such as in Madagascar
where it persists until today!>16:5253 As such, the possibility of
maritime introductions of plague into London and Marseille
during the second pandemic vastly expands the breadth of
potential geographic source(s) for these strains. Nevertheless, the
phylogenetic positioning of the BED and OBS genomes within
the “post-BD lineage” and in relation to other second pandemic
isolates suggests they arose within Europe or its vicinity.

We identified a 49-kb deletion within both BED and OBS
genomes (Fig. 4b), which caused the loss of two virulence-
associated genes, mgtB and mgtC (Fig. 4a). This deletion could
not be identified in other second pandemic or modern strains in
our dataset (Supplementary Fig. 21). The inferred virulence
potential of mgtB and mgtC genes is associated with intracellular
survival of Y. pestis within macrophages*0->4. Their co-expression
has been shown to affect the virulence exerted by other patho-
genic enterobacteria under laboratory conditions®>>® and both
genes have been proposed as potential drug targets*>->7. More-
over, the function of mgtB was shown to be temperature-
dependent, being active at 37 °C but not at 20 °C>8, suggesting its
loss affects the bacterium in warm-blooded hosts. Intriguingly, a
45-kb deletion in the same region was identified in genomes
associated with late outbreaks of the first plague pandemic
(6th-8th century AD)28, which sets it as a candidate for con-
vergent evolution and raises questions regarding its functional
importance. Given that all genomes displaying this deletion were
obtained from plague victims, including the Great Plague of
Marseille (1720-1722 AD) that is known to have caused high
mortality, its occurrence may not have reduced the pathogen’s
virulence, particularly since genome decay is a well-established
characteristic of Y. pestis evolution®>0, Nevertheless, since both
lineages that show this deletion are likely extinct, its functional
characterisation will be of importance to evaluate potential effects
on maintenance in mammalian and arthropod hosts, in Europe,
during the first and second pandemics.

The second plague pandemic has arguably caused the highest
levels of mortality of the three recorded plague pandemics-0L. Tt
serves as a classic historical example of rapid infectious disease
emergence, long-term local persistence and eventual extinction

for reasons that are currently not understood. We have shown
that extensive sampling of ancient Y. pestis genomic data can
provide direct molecular evidence on the genetic relationships of
strains present in Europe during that time. In addition, we pro-
vide relevant information regarding the initiation and progression
of the second pandemic and suggest that a single source reservoir
may be insufficient to explain the breadth of epidemics and Y.
pestis’ genetic diversity in Europe during the 400-year course of
the pandemic. Although certain key regions in western Eurasia
remain under-sampled for ancient Y. pestis DNA, namely the
eastern Mediterranean, Scandinavia and the Baltics, vast amounts
of high-quality genomic data are becoming increasingly available.
Their integration into disease modelling efforts, which consider
vector transmission dynamics®>93, climatic!>64%> and epide-
miological data®, as well as a critical re-evaluation of historical
records®’, will become increasingly important for better under-
standing the second plague pandemic.

Methods

Tooth sampling, DNA extraction and Y. pestis qPCR screening. Laboratory
work was primarily performed in the dedicated aDNA facilities of the Max Planck
Institute for the Science of Human History in Jena. Part of the sampling and DNA
extractions were performed at aDNA facilities of the ArchaeoBioCenter of the
Ludwig Maximilian University of Munich and aDNA facilities of the University of
Cambridge, Department of Archaeology.

One-hundred and eighty teeth from nine sites located in England (BED), France
(TRP), Germany (NAB, MAN, STA, LBG, BRA), Russia (LAI) and Switzerland
(STN) spanning the 14th-17th centuries (see Supplementary Note 1) were
sectioned in the cementoenamel junction, and 30-70 mg of powder was removed
from the surface of the pulp chamber using a dentist drill. This powder was then
used for DNA extraction, using a protocol optimised for the retrieval of short
fragments that are characteristic of ancient DNA®, Tooth powder was incubated in
1 ml of lysis buffer (0.45 M EDTA, pH 8.0, and 0.25 mg/ml proteinase K) overnight
(12-16 h) at 37 °C. Then, DNA was bound to the silica membrane of spin columns
using 10 ml of GuHCl-based binding buffer as described before®s, followed by a
purification that was performed using either the MinElute purification kit (Qiagen)
or the High Pure Viral Nucleic Acid Large Volume Kit (Roche). DNA was eluted in
100 pl of TET (10 mM Tris-HCI, 1 mM EDTA pH 8.0, 0.05% Tween 20).
Extraction blanks and a positive extraction control (cave bear specimen) were taken
along for every extraction batch. All extracts were then evaluated for PCR
inhibition, by spiking 2 pl of each extract in a qPCR reaction containing a standard
of known concentration!”. None of the extracts showed signs of PCR inhibitions
and, therefore, all were tested by qPCR for the presence of the plasminogen
activator gene (pla), located on the Y. pestis-specific pPCP1 plasmid using a
published protocol!”. PCR products were not sequenced as all putatively positive
samples were subsequently evaluated through whole-genome enrichment and next-
generation sequencing. All extraction and PCR blanks were free of amplification
products.

In addition, 26 specimens from the Augustinian Friary in Cambridge (NMS)
were sampled and DNA was extracted at the University of Cambridge. Roots were
sawed from teeth using a sterile dremel cutting wheel and a UV-irradiated
toothbrush was then used to briefly brush the roots with 5% w/v NaOCL
Subsequently, roots were soaked in 6% w/v bleach for 5 min, then rinsed twice with
ddH,0, and finally soaked in 70% ethanol for 2 min. The roots were then
transferred to a sterile paper towel and UV irradiated for 50 min on each side. After
irradiation, teeth were weighed and subsequently transferred in 5-ml or 15-ml
tubes for DNA extraction. DNA extraction was carried out as follows: 2 ml of
EDTA (0.5M, pH 8.0) and 50 pl of Proteinase K (10 mg/ml) were used for every
100 mg of sample. Extractions were then incubated at room temperature for 72 h.
Extracted DNA was concentrated using the Amicon Ultra-15 concentrators with a
30-kDa filter, down to 250 ul. DNA was then purified using the MinElute PCR
purification kit (Qiagen) according to manufacturer’s instruction. For the elution
step, column-bound DNA was incubated with 100 yul of Elution buffer for 10 min
at 37°C.

Non-UDG library preparation and metagenomic screening with HOPS. The
following protocol was carried out in the ancient DNA facility of the University of
Cambridge, Department of Archaeology.

Non-UDG libraries were prepared for the NMS samples (Augustinian Friary,
Cambridge; Supplementary Table 2) with the NEBNext® Library Preparation Kit
for 454 (E6070S, New England Biolabs, Ipswich, MA) using a modified version of
the manufacturer’s protocol®. Adaptors were constructed as previously
described?!. Indexing PCR reactions were set up as follows: 50 ul of DNA library,
1x PCR buffer, 2.5 mM MgCl,, 1 mg/ml BSA, 0.2 uM in PE 1.0, 0.2 mM dNTP
each, 0.1 U/ul HGS Taq Diamond and 0.2 uM indexing primer, with the following
cycling conditions: 5 min at 94 °C, followed by 18 cycles of 30 s each at 94 °C, 60 °C
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and 68 °C, with a final extension of 7 min at 72 °C. Amplified products were
purified using the MinElute kit (Qiagen) and DNA was eluted in 35 pl EB. The
indexed libraries were then quantified using the Quant-iT™ PicoGreen® dsDNA kit
(P7589, Invitrogen™ Life Technologies) on the Synergy™ HT Multi-Mode
Microplate Reader with Gen5™ software. Subsequent shotgun sequencing of these
libraries was carried out on an Illumina NextSeq500 platform (using the High-
Output kit 1 x 75 cycle chemistry) at the University of Cambridge Biochemistry
DNA Sequencing Facility.

The program MALT (version 0.4.0)!8, integrated in the pathogen screening
pipeline HOPS!?, was used to assess the presence of Y. pestis DNA in the NMS
specimens. A custom NCBI RefSeq (November 2017) database was used for
running MALT, including all bacterial and viral assemblies marked as complete, a
selection of eukaryotic pathogen genomes, as well as the human reference sequence
(GRCh38). Genomes with keywords such as “unknown” were removed. A total of
15,361 genomes were retained in the database. Pre-processed shotgun NGS reads
(.fastq) were used as input and the parameters were set as follows: 85 for the
minimum percentage identity (-minPercentldentity), 1 for the minimum support
(-minSupport), using a top percentage value of 1 (-topPercent), a semi-global
alignment mode, and with all remaining parameters set to default. The resulting .
rma6” output files were automatically post-processed with MALTExtract (in
HOPS) against a list of 100 target bacterial pathogen species, and the resulting
profiles were qualitatively assessed within HOPS for the number of aligning reads,
the read edit distance against different taxa and the presence of aDNA damage
patterns’®.

UDG library preparation and Y. pestis whole-genome capture. All putative Y.
pestis-positive samples were subsequently converted into Illumina double-stranded
DNA libraries as described before?!, using a starting volume of 50-60 pl, with an
initial USER (New England Biolabs) treatment step, where UDG was used in
combination with endonuclease VIII to excise uracil nucleotides that result from
post-mortem DNA damage2%70. Subsequently, full UDG-treated and partially
UDG-treated libraries were quantified on a qPCR using the IS7/IS8 primer com-
bination. Following, a double-indexing step was performed where libraries were
split into multiple PCR reactions based on their initial quantification’!, in order to
ensure maximal amplification efficiency. Every reaction was assigned a maximum
input of 2 x 1010 DNA molecules. A unique index combination (index primer
containing a unique 8-bp identifier) was assigned to every library, and a 10-cycle
amplification reaction was used to attach index combinations to DNA library
molecules using Pfu Turbo Cx Hotstart DNA Polymerase (Agilent). PCR products
were purified using the MinElute DNA purification kit (Qiagen), and eluted in TET
(10 mM Tris-HCI, 1 mM EDTA pH 8.0, 0.05% Tween 20). After indexing, all
libraries were amplified using Herculase II Fusion DNA Polymerase (Agilent) to a
concentration of 200-300 ng/ul, in order to achieve 1-2 ug of DNA in a total of
7 pl. Products were again purified using the MinElute DNA purification kit
(Qiagen), and eluted in TET (10 mM Tris-HCI, 1 mM EDTA pH 8.0, 0.05% Tween
20). In-solution whole-genome Y. pestis capture was then performed as described
previously??, where the following genomes were used as templates for probe design:
C0O92 chromosome (NC_003143.1), CO92 plasmid pMT1 (NC_003134.1), CO92
plasmid pCD1 (NC_003131.1), KIM10 chromosome (NC_004088.1), Pestoides

F chromosome (NC_009381.1) and Y. pseudotuberculosis IP 32953 chromosome
(NC_006155.1). DNA captures were carried out on 96-well plates. Each sample was
either captured in its individual well, or pooled with maximum one more sample
from the same site. Capture enrichment was carried out for two rounds, except for
sample NMS002 that was captured for one round. Blanks with non-overlapping
index combinations were captured together.

Sequencing and read processing. After capture, all products were sequenced on
an Ilumina NextSeq500 platform using (1 x 151 + 8 + 8 cycles or 1 x76 +8 + 8
cycles) or on a HiSeq4000 (using 1 x 76 + 8 4 8 cycles or 2 x 76 4 8 + 8 cycles).
Preprocessing of de-multiplexed reads was performed on the automated pipeline
EAGER (v1.92.55)72 and involved the removal of Illumina adaptors and read
merging using AdapterRemoval v2 (ref. 73), as well as filtering all reads for
sequencing quality (minimum base quality of 20) and length (to retrieve only reads
>30 bp). Subsequently, reads were mapped with BWA (version 0.7.12)74, imple-
mented in EAGER, against the CO92 reference genome (NC_003143.1)3 using
stringent parameters (-n 0.1, -1 32) for genome reconstruction and mean coverage
calculation and more lenient parameters (-n 0.01, -1 32) for inspection of regions
surrounding potential variants. Reads with mapping quality lower than 37 (-q)
were removed using SAMtools (http://samtools.sourceforge.net/), and PCR dupli-
cates were removed using the MarkDuplicates tool (http://broadinstitute.github.io/
picard/). Prior to SNP identification, raw pre-processed reads from partially-UDG-
treated libraries were trimmed for 2-bp at both ends to remove sites that could be
affected by aDNA damage and, subsequently, were re-filtered for length and re-
mapped using stringent parameters.

SNP calling and phylogenetic analysis. SNP calling was performed using the
UnifiedGenotyper of the Genome Analysis Toolkit (GATK v3.5)7°. Our newly
reconstructed genomes were analysed alongside previously published Y. pestis gen-
omes, which included a modern-day dataset of 233 genomes?3-2748 (as listed in

ref. 28), three Bronze Age strains®!, a 2nd- to 3rd-century AD isolate from the Tian
Shan mountains in Kyrgyzstan, one Justinianic strain (Altenerding 2148)%°, 15
previously published historical genomes from the second plague pandemic®-10:14 and
a Y. pseudotuberculosis strain (IP32953)%0 that was used as outgroup for rooting the
phylogeny. A vcf file was produced for every genome using the “EMIT_ALL_SITES”
option, which generated a call for every position present in the reference genome.
Furthermore, we used the custom java tool MultiVCFAnalyzer v0.85 (ref. 33)
(https://github.com/alexherbig/MultiVCFAnalyzer) to produce a SNP table of variant
positions across all genomes analysed, using the following parameters: for homo-
zygous alleles, a SNP would be called when covered at least 3-fold with a minimum
genotyping quality of 30, and for heterozygous alleles, a variant would be called when
90% of reads would support it. In cases where none of the parameters would be met,
an “N” would be inserted in the respective genomic position. In addition, we omitted
previously defined noncore regions, as well as annotated repetitive elements, homo-
plasies, tRNAs, rRNAs and tmRNAs from our SNP analysis!®23. In the present
dataset, a total of 7,510 variant positions were identified. Subsequently, the annotation
as well as the effect of each SNP was determined through the program SnpEff v3.1i
(ref. 76).

We used a SNP alignment produced by MultiVCFAnalyzer v0.85 to construct
phylogenetic trees using the ML and maximum parsimony (MP) methods. Up to
3% missing data were included in the analysis (97% partial deletion), resulting in a
total number of 6,058 SNPs used for phylogenetic reconstruction. The MP
phylogeny was produced in MEGA? (ref. 77) in order to make a first assessment of
genome topologies. The ML phylogenies were constructed with the program
RAXML (version 8.2.9)78 using the Generalised Time Reversible (GTR)”® model
with four gamma rate categories and 1000 bootstrap replicates to assess tree
topology support.

Reanalysis of recently published non-UDG Y. pestis genomes. A recent study
described the phylogenetic positioning and SNP analysis of five 14th century Y.
pestis genomesS. As these genomes were non-UDG treated, they were reanalysed
here using different criteria compared to other second pandemic and modern
genomes in our dataset. Read pre-processing and merging was done as described in
the above section “Sequencing and read processing”. In addition, read mapping
against the CO92 reference genome (NC_003143.1) was performed using more
lenient parameters in BWAS0 (-n 0.01, -1 16) than the ones previously reported?, to
account for ancient DNA deamination within mapping reads. In our view, the
usage of strict BWA mapping parameters for non-UDG data (i.e. -n 0.1) could
potentially introduce a reference bias to the analysis, which could in turn affect
SNP discovery and phylogenetic inferences. PCR duplicates were removed from all
five datasets using MarkDuplicates (http://broadinstitute.github.io/picard/) and
reads were filtered for mapping quality (q 37) using SAMtools (http://samtools.
sourceforge.net/). The obtained mean coverage for each of the five re-analysed
genomes was: 3.4-fold for BSS31 (27.8% covered 5-fold), 6.7-fold for SLC1006
(59.1% covered 5-fold), 30.5-fold for OSL-1 (91.7% covered 5-fold), 38.1-fold for
Ber37 (95.2% covered 5-fold) and 46.1-fold for Ber45 (94.1% covered 5-fold). In
addition, the obtained average fragment lengths for the five re-analysed genomes
were as follows: 52.2 bp for BSS31, 71.5 bp for SLC1006, 108 bp for OSL-1, 61.9 bp
for Ber37 and 69.7 bp for Ber45. Before SNP calling, MapDamage2.0 (ref. 81) was
used to rescale base qualities, primarily on the extremities of mapped reads, to
account for sites that could potentially be affected by aDNA deamination. Subse-
quently, SNPs were called using GATK and the resulting vcf files were compara-
tively assessed in MultiVCFAnalyzer v0.85 (ref. %) to compile a SNP table
including all genomes in the dataset as described in the above section “SNP calling
and phylogenetic analysis”.

Qualitative SNP assessment in UDG-treated data using SNPEvaluation. A
frequent challenge faced when using ancient metagenomic datasets to recon-
struct bacterial genomes is a strong environmental signal that can interfere
with SNP assignments, especially in low-coverage data?®. Such an effect can
interfere with phylogenetic analyses by creating artificial branch lengths, which
can in turn affect evolutionary inferences. As such, in order to avoid erroneous
SNP assignments, we qualitatively evaluated all private SNP calls for the
newly reconstructed genomes that were used for phylogenetic analysis in this
study (minimum 50% of the genome covered 5-fold (Table 1)). We used the
recently developed SNPEvaluation tool (https://github.com/andreasKroepelin/
SNP_Evaluation) to compare the SNP profiles that arise for each dataset under
both stringent (BWA parameters -n 0.1, -1 32) and more lenient (BWA para-
meters: -n 0.1, -1 16) mapping parameters. Subsequently, the region around each
SNP was evaluated within a 50-bp window, and was accepted as true when
fulfilling the following criteria: (i) the ratio of coverage between the lenient and
stringent mapping was not higher than 1.00, (ii) there were no heterozygous
positions within this window when considering a high stringency mapping and
(iil) no missing regions/bases were observed within close proximity to the
identified SNP (see Supplementary Data 2). Note that the above criteria in
SNPEvaluation have been determined and evaluated in UDG-treated metage-
nomic data28 and, therefore, would need to be re-adapted for non-UDG-treated
data that are heavily affected by aDNA deamination.
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Heterozygosity estimates. Heterozygous variant calls were investigated given the
disparity of branch lengths observed in certain newly reconstructed and previously
published genomes (see Supplementary Figs. 14 and 16). Our approach takes into
account the “haploid” nature of prokaryotic genomes, suggesting that “hetero-
zygous” SNPs could either arise as a result of mixed infections or from erroneous
mapping of DNA reads that belong to closely related bacterial contaminants. We
performed SNP calling with the UnifiedGenotyper in GATK’?, using the “EMI-
T_ALL_SITES” option that generated a call for all positions in the reference
genome. We then used MultiVCFAnalyzer v0.85 (ref. 33) to compile a SNP table of
variant positions with allele frequencies 10-90% across our dataset, hence
accounting for all ambiguous heterozygous positions. Histograms of allele fre-
quencies for all SNPs with <100% read support were constructed with R v3.4.1
(ref. 82) using representative genomes from all sites.

Estimates of substitution rate variation in Y. pestis. In order to calculate the
substitution rate variation across Y. pestis isolates associated with the second
pandemic, we first assessed the temporal signal across Branch 1 that includes all
genomes from both the second and third plague pandemics. For this, we computed
an ML phylogeny in RaxML7® using all Branch 1 genomes8-10,14,16,23,48,83,84
(modern + ancient n = 79), with the exception of the BD genomes TRP002 and
OSL-1 that showed possible environmental contamination to be affecting their SNP
calls. In addition, we used the strain 2.MED KIM10 (Branch 2) as outgroup for
rooting the tree. Variant positions across this set of genomes were used for the
analysis, allowing for up to 3% missing data (550 SNPs). We used TempEst v1.5
(http://tree.bio.ed.ac.uk/software/tempest/) for calculating the root-to-tip regres-
sion in relation to specimen or sampling ages. The calculated correlation coefficient
(R) and R? values were 0.57 and 0.33, respectively, which permitted the proceeding
with molecular dating analysis.

The Bayesian framework BEASTv1.8 (ref. 89) was used to assess the substitution
rate variation across the Y. pestis Branch 1 using the 2.MED KIMI10 as outgroup.
Our BEAUi setup took into consideration all archaeological, radiocarbon and
sampling dates of both ancient and modern genomes (Supplementary Data 6) that
were used as calibration points for the Bayesian phylogeny. Divergence dates for
each node in the tree were estimated as years before the present, where the year
2005 was set as the present since it represents the most recently isolated modern Y.
pestis strain on Branch 1 (1.ORI MGO5). Monophyletic clades were defined based
on the ML phylogeny (Supplementary Fig. 12). The GTR”? substitution model (4
gamma rate categories) and a lognormal relaxed clock (clock rate tested and strict
clock rejected in MEGA777) were used to set up two separate analyses using the
coalescent constant size3® and coalescent Bayesian skyline” demographic models.
For each analysis, three independent chains of 50,000,000 states each were carried
out and then combined using LogCombiner to ensure run convergence, with 10%
burn-in. In addition, we estimated marginal likelihoods to determine the best
demographic model for our dataset using path sampling and stepping stone
sampling (PS/SS) implemented in BEAST v1.8 (ref. 8°). For this, each of the
described runs was carried out for an additional 50,000,000 states (500,000 states
divided into 100 steps) using an alpha parameter of 0.3, which determined the
coalescent Bayesian skyline model as better fit for the current dataset. The results
produced by the run considering this demographic model were then viewed in
Tracer v1.6 (http://tree.bio.ed.ac.uk/software/tracer/) to ensure all relevant effective
sample sizes (ESS) were >200. We used TreeAnnotator®, to produce a maximum
clade credibility (MCC) phylogeny using the best-fit model with 10% burn-in,
which resulted in the processing of 13,503 trees. The MCC tree was viewed and
modified in FigTree v1.4 (http://tree.bio.ed.ac.uk/software/figtree/) where branch
lengths were represented as a function of age and mean rates were used to colour
individual branches. Finally, the skyline plot was produced and viewed using
Tracer v1.6 (http://tree.bio.ed.ac.uk/software/tracer/) after resampling states at
a lower frequency (every 100,000) using LogCombiners>.

Gene presence/absence and deletion analysis. In order to investigate the
virulence-associated gene profiles of the newly reconstructed second pandemic
genomes, the highest quality (coverage) genome from every site (LAI009, NAB003,
TRP002, MAN008, STA001, NMS002, LBG002, STN014, BRA001, BED030) was
used for comparison with each other and with previously published representatives
of ancient (London BD 8124/8291/11972, OSL-1 Ber45, London 6330, Bolgar 2370,
Barcelona 3031, Ellwangen 549_0O, OBS137, RISE509, RT5, Altenerding 2148) and
modern (1.0RI-CO92, 0.PE2-PESTF, 0.PE4-Microtus 91001) Y. pestis isolates as
well as a Y. pseudotuberculosis strain (IP32953). All listed genomes were re-mapped
against the CO92 chromosomal reference genome (NC_003143.1) without the use
of a mapping quality filter of (-q 0). The coverage across 80 chromosomal and 43
plasmid virulence-associated and evolutionary determinant genes that were pre-
viously defined®® was calculated using bedtools®3. The results are plotted in the
form of a heatmap using the ggplot2 (ref. 8%) package in R version 3.4.1 (ref. 82) and
can be viewed in Fig. 4. In addition, we used BWA-MEM?? to explore the precise
coordinates of observed gene or region losses in all affected genomes using default
parameters. For the visualisation of an identified deletion across BED and OBS
isolates, we computed the average coverage across 3,000-bp windows in repre-
sentative Y. pestis genomes from all analysed periods of the second pandemic, and
subsequently used the program Circos”° to produce coverage plots of a 20-fold
maximum coverage. The coverage plots were arranged in chronological order as

follows: LAI0O09, London BD 8124/8291/11972, Ber45, Bolgar 2370, MAN008,
STA001, NMS002, ELW098, LBG002, STN014, BRA001, BED030, OBS137 and the
reference genome CO92.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

Raw sequencing data of the deep-sequenced genomes are available on the European
Nucleotide Archive under project accession number PRJEB29990 . Other data supporting
the findings of the study are available in this article and its Supplementary Information
files, or from the corresponding authors upon request.
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