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Abstract
The SARS-CoV-2 pandemic urgently calls for the development of effective preventive tools. COVID-19 hits greatly the elder
and more fragile fraction of the population boosting the evergreen issue of the vaccination of older people. The development of a
vaccine against SARS-CoV-2 tailored for the elderly population faces the challenge of the poor immune responsiveness of the
older population due to immunosenescence, comorbidities, and pharmacological treatments. Moreover, it is likely that the
inflammaging phenotype associated with age could both influence vaccination efficacy and exacerbate the risk of COVID-19-
related “cytokine storm syndrome” with an overlap between the factors which impact vaccination effectiveness and those that
boost virulence and worsen the prognosis of SARS-CoV-2 infection. The complex and still unclear immunopathological
mechanisms of SARS-CoV-2 infection, together with the progressive age-related decline of immune responses, and the lack
of clear correlates of protection, make the design of vaccination strategies for older people extremely challenging. In the ongoing
effort in vaccine development, different SARS-CoV-2 vaccine candidates have been developed, tested in pre-clinical and clinical
studies and are undergoing clinical testing, but only a small fraction of these are currently being tested in the older fraction of the
population. Recent advances in systems biology integrating clinical, immunologic, and omics data can help to identify stable and
robust markers of vaccine response and move towards a better understanding of SARS-CoV-2 vaccine responses in the elderly.

Keywords COVID-19 . SARS-CoV-2 . Vaccination . Older population . Immunosenescence . Inflammaging

Older people as the main target population
for a COVID-19 vaccine

The present SARS-CoV-2 pandemic is posing an unprece-
dented healthcare and socio-economic burden worldwide.
SARS-CoV-2 hits greatly the older and more fragile fraction
of the population, boosting the evergreen issue of vaccination
in elderly people. In Europe, as of week 39/2020, SARS-CoV-
2 infection was reported in over 5.7 million people; of those,
about 45% were aged 60 or more, while more than 90% of the
235,000 reported deaths occurred in this age group.
Strikingly, people aged 80 or more accounted for more than
50% of the reported deaths, with a median age at death of 81
years (https://www.euro.who.int/en/health-topics/health-
emergencies/coronavirus-covid-19/weekly-surveillance-
report; Fig. 1). These figures are in line with estimates
elaborated from the epidemiological data collected in China
at the beginning of the outbreak, which reported an adjusted
case fatality ratio of 9.5% in the ≥ 60 age population [1]. The
male to female ratio of SARS-CoV-2 reported cases is around
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0.86, while the M:F ratio of deaths is around 1.38, suggesting
that, despite being more frequently infected, females are more
capable of dealing with the infection [2, 3].

It is widely reported that most deaths occurred among pa-
tients with at least one underlying disease, such as hyperten-
sion [4] and diabetes mellitus [5]. A meta-analysis of seven
clinical studies performed in China identified chronic obstruc-
tive pulmonary disease (COPD), cardiovascular disease, and
hypertension as risk factors for severe disease and intensity
care unit (ICU) admission [6]. Analysis of risk factors associ-
ated with more than ten thousand deaths by COVID-19 in the
UK confirmed that age was linearly correlated with risk of
death and that obesity, diabetes, severe asthma, respiratory
disease, neurological disease (including stroke), recent (<
5 years) hematological malignancy, and recent (< 1 year) can-
cer diagnosis were all associated with higher death risk. As for
hypertension, the hazard risk was higher only for the popula-
tion < 70 years old, even if hypertension itself was strongly
associated with other risk factors such as obesity and diabetes
[7]. Importantly, these epidemiological studies identify the
categories of subjects who are at higher risk of developing
severe SARS-CoV-2 infection and that should be prioritized
in vaccine administration.

Themassive effort for the development of a vaccine against
SARS-CoV-2 could be frustrated by the poor responsiveness
to vaccination that characterizes a large proportion of the el-
derly population. In this rush against the time, we risk to pay a
dear toll for the lack of knowledge in the response to vaccina-
tion of the elderly, a well-known issue, neglected notwith-
standing its evident urgency and the annual reproposal
through the seasonal influenza epidemic above all.
Interestingly, there is a consistent overlap between the factors
hampering vaccination effectiveness in the elderly and those
that boost the virulence and worsen the prognosis of SARS-
CoV-2 infection.

A common characteristic of the elderly people is the onset
of a sterile low-grade increase of the basal inflammatory state
named “inflammaging,” which is considered a universal etio-
logical agent of most of the age-related diseases [8]. It is likely
that some specific components of the inflammaging pheno-
type could both influence vaccination efficacy and then

increase the risk of the early massive production of inflamma-
tory cytokines, termed the “cytokine storm syndrome.” This is
a condition reported in severe COVID-19 cases during which
the patient’s immune system spins out of control and starts
damaging healthy organs owing to the increased vascular per-
meability, vascular paralysis, and hypovolemic shock [9].

Angiotensin-converting enzyme 2 (ACE2) has been iden-
tified as the receptor for SARS-CoV-2, and it has been sug-
gested that differential levels of ACE2 in the cardiac and pul-
monary tissues of younger versus older adults may be at least
partially responsible for the spectrum of disease virulence ob-
served among patients with COVID-19 [10].

Here, we analyze the different aspects that tackle SARS-
CoV-2 vaccination in the elderly population, considering im-
munologic, genetic, and socio-economic factors that impact
on the age-related changes of immune responses. A view of
the current available vaccine platforms with a special focus on
the clinical trials including older adults is reported.

How the elderly condition can affect
COVID-19 disease progression
and the response to vaccination

Immunosenescence

For many reasons, it is difficult to clearly define what
immunosenescence is: (i) immunosenescence is quite com-
plex and involves cellular and molecular changes occurring
lifelong (from newborns to centenarians) in both the innate
and the adaptive immune systems; (ii) these changes can be
at the same time detrimental and beneficial/adaptive [11]; (iii)
it is difficult to identify a unique common marker of
immunosenescence, due to the overwhelming number of bio-
logical and non-biological factors that can impinge lifelong on
the immune system of each individual; (iv) the changes oc-
curring with age in the immune system are deeply correlated
with the profound environmental, epidemiological, lifestyle,
societal, medical, and public health changes, including vacci-
nation policies and practices, that occurred in the last century.

Fig. 1 Distribution of COVID-19
cases and deaths by age group.
Frequency of COVID-19 cases
(upper diagram) and deaths
(lower diagram) among different
age ranges (colored boxes) in
Europe, estimated in July 2020
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Accordingly, immunosenescence is highly context-
dependent [12], different in different geographical and histor-
ical settings and in men and women, correlated to socio-
economic position, and sensitive to psychological stressors.
Indeed, both the adaptive and the innate immune systems have
the capability of “remembering” all immunological stimuli a
person has been exposed to lifelong. We have conceptualized
this situation with the term immunobiography, which should
help in understanding the enormous heterogeneity of the im-
mune phenotype in old people. This is also the reason why
there is a sort of imprinting in the immune responses favoring
those towards antigens that have been experienced early in life
[13].

The complex biological processes of aging are the result of
alterations in gene regulation and protein expression, signaling
pathways, and biological networks. Complex changes, includ-
ing pervasive epigenetic and metabolic modifications, affect
most of the subsets of naïve, memory, regulatory effector T
cells, and B cells [14–16]. Despite the challenging complexity,
a universally observed hallmark of immunosenescence is the
decrease of naive T cells (particularly CD8+ T cells) in periph-
eral blood [17] consequent to thymic involution responsible for
the early decline in the output of naïve T cells to the periphery
and for the related shrinking of the T cell repertoire [18–20].
Other important aging-related alterations are (i) the shift in the
bone marrow maturation of hematopoietic cells towards mye-
locytic differentiation [21], concomitant with a reduced
lymphopoiesis, mainly due to changes in progenitor cells in
the bone marrow [12, 22]; (ii) the increased numbers of mem-
ory cells owing to large clonal expansion towards epitopes of
persistent viral infections (Cytomegalovirus [CMV] and
Epstein Barr virus [EBV]) [23, 24]; (iii) the compromised abil-
ity of CD4+ T cells to differentiate into functional subsets,
resulting in a multitude of dysregulated responses, such as a
reduced cognate help to B cells with consequent reduced hu-
moral immunity, and the increased ratio of the proinflamma-
tory Th17 cells with respect to the immunosuppressive T reg-
ulatory cells, thus favoring a basal proinflammatory status [16,
25]; (iv) accumulation of differentiated exhausted T cells, in-
duced by a repeated pathogen encounter during chronological
aging, and end-stage differentiated senescent T cells, charac-
terized by a progressive reduction of telomere length leading to
a state of proliferative arrest [26].

With aging, health conditions associated with immune
senescence, comorbidities (particularly noncommunicable
diseases such as heart disease, cancers, and metabolic
and autoimmune diseases), and pharmacological treat-
ments affect the immune responses to both vaccines
and infectious diseases.

Overall, as a result of immunosenescence, the elderly pop-
ulation is more susceptible to infections, particularly to influ-
enza, Streptococcus pneumoniae RSV, and group B strepto-
coccus but also to opportunistic, re-emergent chronic

infections such as herpes zoster as well as antibiotic-resistant
nosocomial pathogens.

The reduced adaptive immune response, together with al-
tered innate cell function, such as chemotaxis, phagocytosis,
signaling pathways, and intracellular killing, prevents the ap-
propriate control of the initial inflammatory response elicited
upon viral infection. For RNA virus, such as coronavirus,
different pattern recognition receptors (PRR) are triggered
on the innate cells during the early phases of infection.
These include the endosomic Toll-like receptor 3 and 7 and
the cytosolic RIG-I/MDA-5 molecules, which recognize viral
RNA [27], and the cGAS-STING pathway, which recognizes
cytosolic DNA [28] activated by cellular damage and mito-
chondrial DNA release caused by viral infection [29]. The
stimulation of these PRR leads to the expression of type I
IFN, a factor that limits viral replication through the stimula-
tion of interferon-stimulated genes, and other inflammatory
cytokines [30]. For Middle East respiratory syndrome
(MERS)-CoV, the timing of type I IFN production appears
to dictate the outcome of infection in mouse models, and its
administration within 1 day after infection was protective
against lethal infection, while a delay in IFN production
caused an inability to control viral replication, leading to cel-
lular damage of airway epithelia and the lung parenchyma and
an eventual lethal inflammatory cytokine storm [31]. The lat-
ter response often predominates in older individuals and in
aged mouse models of SARS-CoV-1 infection [32, 33].

Induction of innate immune responses is a crucial step in
the pathophysiology of COVID-19 disease (Fig. 2). On one
hand, it triggers the anti-viral host defense mechanisms nec-
essary for elimination of infection, but on the other hand, it
may contribute to hyperinflammation and tissue damage dur-
ing the later stages of the disease in a minority of patients [34].
This can be particularly relevant in the elderly population in
which inflammaging, the state of chronic low-grade sterile
inflammation [8], characterized by high serum concentrations
of C-reactive protein (CRP), IL-6, IL-8, and tumor necrosis
factor (TNF)-α, can be present.

Inflammaging

Tissue damage in COVID-19 is mainly mediated by an excess
of immune response to the virus, which results in a cytokine
storm, with activation of the IL-6 signaling pathway. The
pathophysiology of SARS-CoV-2 infection has strong simi-
larities to other severe viral lung infections caused by SARS-
CoV-1 and MERS-CoV.

One of the first published studies on clinical features of
COVID patients hospitalized in Wuhan showed that proin-
flammatory cytokines and chemokines, such as TNF-α,
granulocyte-colony stimulating factor (G-CSF), interferon
gamma- induced p ro t e i n -10 ( IP -10 ) , monocy t e
chemoattractant protein-1 (MCP-1), and macrophage
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inflammatory proteins 1-α (MIP-1α), were significantly
higher in patients admitted to the intensive care unit (ICU)
compared to those who were not in ICU [35]. Immune pathol-
ogy in the form of vascular and cutaneous lesions has also
been widely reported [36, 37]. The role of a dysregulated
inflammatory response was proven in an animal model of
SARS-CoV-1 infection using aged macaques. Aged animals
are more prone to develop severe disease and activate more
readily the innate response, in particular the NF-kB pathway
and proinflammatory cytokines such as IL-8 and IL-1β, while
not inducing significantly IFN-β response. The innate immu-
nity activation is not due to the viral load, which is comparable
among young and aged macaques [38].

Transcriptomic analysis performed in samples from sub-
jects with severe COVID-19 revealed the presence of low
levels of type I and type III interferon genes together with
elevated levels of proinflammatory cytokines and
chemokines, such as IL-6, IL1RA, CCL2, CCL8 CXCL2,
CXCL8, CXCL9, and CXCL16 [39].

Which type of cells elicits this cytokine storm and the vi-
rological mechanisms behind this inflammatory reaction are
still unclear [40]. Lung epithelial cells, alveolar macrophages,

dendritic cells, and endothelial cells can effectively release the
proinflammatory cytokines and chemokines, thus attracting
monocytes, macrophages, and T cells to the site of infection
[41]. The overproduction of proinflammatory cytokines in the
lungs can damage the tissue infrastructure, recruit macro-
phages that infiltrate air spaces, and generate the respiratory
failure from acute respiratory distress syndrome (ARDS),
which is recognized as the leading cause of mortality.
Meanwhile, the direct attack on other organs by disseminated
SARS-CoV-2, the immune pathogenesis caused by the sys-
temic cytokine storm, and the microcirculation dysfunctions
together may lead tomulti-organ damage, even though wheth-
er SARS-CoV-2 can directly target organs other than the lung
and how it can happen are aspects that need to be further
investigated [40] (Fig. 2).

Together with the hyperinflammatory response, a signifi-
cant lymphopenia, mainly related to CD4+ T and CD8+ T
cells, which correlates with the severity of viral infection,
was reported [42–44]. The causes of this adaptive immunity
suppression are still unclear. Pulmonary recruitment of im-
mune cells from the blood and the infiltration of lymphocytes
into the airways may explain the reduction in blood. The well-

Fig. 2 Possible mechanisms of SARS-CoV-2 immunopathology.
Systemic and local (lung) immune responses and their pathological
role, following SARS-CoV-2 entry into the host are schematically
represented. Induction of innate immune responses is a crucial step in
the pathophysiology of COVID-19 disease, contributing to
hyperinflammation and tissue damage during the later stages of the
disease. Infiltration of immune cells in the lungs causes overproduction
of proinflammatory cytokines, which eventually damages the lung
infrastructure, accumulation of macrophages in the air spaces and
diffuse alveolar damage leading to acute respiratory distress syndrome

(ARDS). Furthermore, elevated levels of circulating proinflammatory
cytokines can cause septic shock and multi-organ dysfunction. Together
with the hyperinflammatory response, overt disseminated intravascular
coagulation has been reported and a significant lymphopenia, mainly
related to CD4+ T and CD8+ T cells, has been observed, possibly due
to pulmonary recruitment of lymphocytes from the blood. A possible
immunopathological role can be mediated by non-neutralizing
antibodies produced by B cells, which may enhance SARS-CoV-2
infection through antibody-dependent enhancement (ADE), further
exacerbating organ damage
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known age-related alteration of the immune function of T cell
and B cells could lead to insufficient control of viral replica-
tion, thus increasing the macrophage infiltration and the lung
injury (Fig. 2).

Finally, a possible immunopathological role can be medi-
ated by non-neutralizing antibodies produced by B cells that
may enhance SARS-CoV-2 infection through antibody-
dependent enhancement (ADE), further exacerbating organ
damage. It has recently been shown that SARS-CoV-1 and
the MERS-CoV take advantage of non- or subneutralizing
antibodies and enter cells via surface CD32a receptors, an
Fc receptor expressed on the surfaces of monocytes and alve-
olar macrophages. The antibody-CD32 interaction facilitates
viral entry and infection, and activates intracellular signaling
to upregulate proinflammatory cytokines [45].

The complex and still unclear immunopathological mech-
anisms of SARS-CoV-2 infection, together with the progres-
sive age-related decline of innate and adaptive immune re-
sponses, and the lack of a clear correlate of protection, make
the design of vaccination strategies for older people extremely
challenging (Fig. 3).

Biological age

An emerging class of instruments in the aging research is the
development of markers capable of assessing the speed of the
aging process. Age is a major risk factor for a high number of
diseases, and in general, it affects the fitness of each individ-
ual, including the capability of responding to vaccine admin-
istration and counteracting a severe infection [46]. However, it
is also evident that the elderly population is extremely hetero-
geneous, so while chronological age is useful to identify

macroscopic risk classes, it is poorly informative within age
classes to get individual information. Biological age is thus
useful to evaluate clinical parameters and health risks on the
basis of the individual aging pace, which tend to be more
heterogeneous in the elderly population. Several established
biological age markers have been generated based on both
classical anthropometric, clinical, and biochemical parameters
as well as on innovative molecular characterizations such as
DNA methylation and the composition of the N-glycan shell
of circulating proteins [47]. Such biomarkers have shown in a
number of studies that the aging pace is higher in the vast
majority of the different elderly conditions, thus demonstrat-
ing that biological age assessment should be a critical infor-
mation in a broad spectrum of clinical practices and in the
development of strategies to tackle healthcare burden and
emergencies. The detailed description of available biological
age markers is out of the scope of the present manuscript, and
an extensive overview is available in the review by Jylhävä
et al. [46]. To date, biological age has not been assessed in the
SARS-CoV-2 clinical setting, but it is noteworthy that biolog-
ical age has been associated with all the most important risk
factors related to a poor prognosis of SARS-CoV-2 infection.
The field of elderly vaccination could benefit from biological
age information, but also in this case, the available data are
rare. In a study from Gensous et al. [48], the whole genome
methylation profile of PBMC was assessed in a group of vol-
unteers of different ages who underwent influenza vaccina-
tion. The relationship between the vaccination response and
the methylation profile was studied. While no difference in
terms of biological age emerged in the study, an age-
dependent epigenetic remodeling emerged in elder non-re-
sponders. The study is limited owing to the very low number

Fig. 3 Challenges for the
development of a SARS-CoV-2
vaccine for elderly people.
Schematic interconnection
between the main immune
mechanisms elicited by the
vaccination process, with the
peculiarity of the elderly immune
system—affected by both
inflammaging and
immunosenescence—and the still
undefined correlates of protection
from SARS-CoV-2 infection. The
complex and still unclear
immunopathological mechanisms
of SARS-CoV-2 infection,
together with the progressive age-
related decline of innate and
adaptive immune responses, and
the lack of a clear correlate of
protection make the design of
vaccination strategies for older
people extremely challenging
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of analyzed subjects but confirmed that DNA methylation is
an informative instrument to be exploited in vaccination stud-
ies and strategies.

Immunobiography

Immunobiography refers to the comprehensive immunologi-
cal, clinical, socio-economic, and geographical history of each
individual, and accounts for the large heterogeneity observed
in the elderly regarding their health status, mirrored by their
large individual variation in the responsiveness to vaccines. A
major advantage of immunobiography is that it incorporates
the most advanced conceptualization of immunosenescence
which, according to the most recent literature [49], has to be
considered as a context- and population-dependent phenome-
non. Accordingly, in order to be properly interpreted, age-
related changes of immune parameters occurring in an elderly
person necessitate a variety of other additional data regarding
sex/gender, demographic cohort, population/country, individ-
ual immunological history, anthropometric parameters, socio-
economic status and education, CMV serostatus, morbidity
and co-morbidity, among others. It is of critical importance
taking in consideration the elderly vulnerability to direct the
rational design of vaccines designed for this target population.

Gender

Gender is a critical issue in both vaccination of the elderly and
in the SARS-Cov-2 pandemic. The pandemic epidemiological
data show clearly that the risk of severe disease and mortality
is sharply higher in men than in women.Men’s hospitalization
exceeds women by about 50%, indicating a significantly
higher susceptibility of men towards severe SARS-CoV-2 in-
fection. Available data show that men outnumber women 2 to
4 times in terms of ICU admissions [50–52]. These numbers
are concordant with the fatality rate that ranges between 1.2
and 1.4 men deaths for one women death. Moreover, this
unbalanced pattern is mirrored by the vaccine uptake, re-
sponses, and outcome in older-aged individuals. Elderly
women are indeed more responsive than men for several vac-
cine protocols recommended in older-aged individuals such as
those against influenza, tetanus, pertussis, shingles, and pneu-
mococcal infections [53]. On the other hand, an influenza
vaccination study reported that aged men antibodies had
higher affinity than those produced by women. Moreover,
men seem to respond better to pneumococcal vaccination in
two independent studies [54, 55]. There is an impaired vacci-
nation response in both old men and women with sex-specific
weaknesses. The most striking data, however, is related to
infection and all-cause mortality: indeed, in a number of re-
ports, vaccine administration produces a sharper decrease of
specific and all-cause mortality in vaccinated women com-
pared to men, indicating that women have higher benefit from

vaccination in the elderly [56–58]. These data indicate the
need to consider sex-specific vaccination protocols for the
elderly population [58, 59] and that the lack of such instru-
ments could be critical in the SARS-CoV-2 pandemic since
old men are both the most susceptible to severe SARS-CoV-2
infection and are those less likely protected by a possible
SARS-CoV-2 vaccine [60–62].

Microbiota

Another factor that could affect vaccine response is the intes-
tinal microbiota that plays a crucial rule in the regulation of the
immune system and is highly affected by age [63–66].
Microbial community composition indeed is influenced by
age, environmental and socio-economic factors, diet, gender,
chronic infections, immunosuppressive chemotherapy, antibi-
otic treatment, or probiotic use [64, 67–69]. The improvement
in the nucleic acid sequencing obtained in the last 15 years hits
massively the microbiological research and promotes the anal-
ysis of heterogeneous microbiological ecosystems such as
those that reside in humans. The characterization of such eco-
logical niches opens to the new conceptualization of humans
as metaorganisms (organisms composed of different organ-
isms) to stress the tight interdependencies between the host
and the microbiological species residing in different anatom-
ical districts.

Gut microbiota changes with age and that is likely an im-
portant contributor and modulator of the inflammaging phe-
notype [70, 71]. Elderly people have less diverse gut micro-
biota and reduced beneficial microorganisms [72]. The gener-
al imbalance of gut microbiota, called “dysbiosis,” is associ-
ated with both frailty, a geriatric syndrome leading to in-
creased vulnerability for adverse health outcomes, and sys-
temic inflammation. Since a hyperinflammation status has
been observed in most severe cases of SARS-CoV-2 infec-
tion, it is possible that gut dysbiosis may influence the clinical
manifestation in COVID-19 infection [73, 74].

Interestingly, the gut microbiota has been shown to also
affect pulmonary health through a bidirectional cross-talk be-
tween the gut microbiota and the lungs [75]. Along this “gut-
lung axis,” microbial products can reach the lung through
blood and modulate pulmonary immune responses [76], while
inflammation processes occurring in the lung can impact on
the gut microbiota [77]. Some studies have demonstrated that
respiratory infections are associated with a change in the com-
position of the gut microbiota [78] and the antibiotic treatment
of mice for removing some gut bacteria has led to increased
susceptibility to influenza virus infection in the lungs [79].
Since one of the severe clinical manifestations of COVID-19
is pneumonia and progression to acute respiratory distress
syndrome (ARDS), especially in elderly and immune-
compromised patients [80], it can be speculated that SARS-
Cov-2 infection can affect this gut-lung cross-talk which
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might influence the outcome of the clinical manifestation [81].
Moreover, even though respiratory symptoms represent the
principal clinical presentation of COVID-19, clinical evidence
suggests that the intestine may be another viral target organ.
Indeed, a high expression of ACE2 has been observed in the
brush border of intestinal enterocytes [82] and, using a human
small intestinal organoid system, it has been demonstrated that
SARS-CoV-2 readily replicates into the enterocytes, resulting
in the production of large amounts of infective virus particles
[83]. Some reports show that SARS-CoV-2 RNA can be de-
tected in the stool of some patients of COVID-19 [84, 85], and
patients often present gastrointestinal symptoms such as diar-
rhea, vomiting, and abdominal pain [86]. Therefore, the char-
acterization of the gut microbiota in patients with active
SARS-CoV-2 intestinal infection could represent a striking
aspect to investigate.

These considerations on inflammaging, immunobiography,
biological age, gender, and microbiota pertain to every vacci-
nation strategy, but are particularly relevant for the develop-
ment of vaccines against SARS-CoV-2 since it more seriously
affects the elderly population and immunopathology is a crucial
factor for the severity disease.

Need for the design of a SARS-CoV-2
vaccination strategies tailored for the elderly

SARS-CoV-2 vaccines are urgently needed, and their design
should take into consideration that the elderly population is
the main target population for vaccination. While older adults
are most likely to be severely affected by COVID-19, they
also may be less responsive to vaccination. Efficacy of vacci-
nation in the elderly is indeed strongly reduced compared to
that of younger adults [87, 88]. SARS-CoV-2 vaccination
strategies, tailored for the elderly, should take into consider-
ation the delicate balance between immunosenescence/
inflammaging and the immunopathological aspects of the
COVID-19 disease (Fig. 3). Vaccine adjuvants and vectors
should be specifically designed for stimulating the elderly
immune system without exacerbating the inflammatory status
[87]. Despite these considerations, the elderly are rarely in-
cluded in vaccine clinical trials; in the last decades, the vast
majority of randomized control trials did not include older
adults and in particular frail older adults who are mostly at
risk. We currently do not have full knowledge on the mecha-
nisms of immunity to protect this population from SARS-
CoV-2 [10].

The development of a SARS-CoV-2 vaccine is extremely
challenging, since we are faced with a novel virus, just
emerged in humans, and correlates of protection have not
yet been fully identified, even though the induction of neutral-
izing antibodies is presumed to be a crucial target for an ef-
fective vaccination (Fig. 3).

Protection in older individuals against influenza virus ap-
pears to require higher neutralization titers than in younger
individuals [89], and this issue might need to be addressed
for SARS-CoV-2. The knowledge obtained from the vaccine
development efforts for MERS and SARS-CoV-1 can be of
high value for SARS-CoV-2, although no vaccines are li-
censed for these coronavirus strains [90].

Memory CD4+ T cells, induced by infections with other co-
ronavirus and capable of responding to SARS-CoV-2, have been
detected in 20–50% of SARS-CoV-2 unexposed donors [91,
92]. The characterization of these cross-reactive T cells in the
elderly and their impact on the immunogenicity of vaccine can-
didates should be taken into consideration in the ongoing
COVID-19 vaccination studies. SARS-CoV-2 vaccine candi-
dates based on different vaccine platforms have been developed,
and about 140 candidates have been tested in pre-clinical exper-
iments, according to theWHO landscape documents of COVID-
19 candidate vaccines (https://www.who.int/publications/m/
item/draft-landscape-of-covid-19-candidate-vaccines) (Fig. 4).
Information on the specific SARS-CoV-2 molecules selected as
vaccine antigens is limited, even though most candidates aim to
elicit neutralizing antibodies against the spike (S) protein and its
receptor-binding domain (RBD), as already performed with the
SARS andMERSvaccines. Awide range of both innovative and
traditional technology platforms has been deployed, including
nucleic acid (DNA and RNA), recombinant viral vectors (repli-
cating and non-replicating), recombinant protein combined with
adjuvants, and live attenuated or inactivated virus [93]. Some of
these platforms were already tested in human studies for SARS-
CoV-1 virus, such as inactivated virus, DNA and soluble S pro-
teins [94–96], or for MERS-CoV [97].

The most advanced candidates for SARS-CoV-2 entered
in human clinical testing with unprecedented rapidity em-
ploy nucleic acid (both mRNA and DNA), recombinant
vaccine vectors (human or chimpanzee Adenovirus vec-
tors), subunit S protein combined or not with different ad-
juvants, and inactivated SARS-CoV-2 virus. Other novel
platforms based on the use of synthetic modified antigen
presenting cells (APC) or cytotoxic T lymphocytes are also
under study (Fig. 4). The platforms using mRNA, non-
replicating viral vectors, and inactivated SARS-CoV-2 vi-
rus have already reached the clinical trial phase III. Some of
the different platforms used may be tailored for specific
population subtypes, such as the elderly, children, pregnant
women, or immunocompromised patients [98]. In this re-
gard, some of the ongoing clinical studies have specifically
taken into consideration the older population, by including
vaccination arms with people aged > 60 years. A schematic
diagram of the ongoing phase I and II clinical trials that
have included older adults is reported in Fig. 5. Enrolling
older adult volunteers will help to better understand vacci-
nation outcomes among the older population, who are most
at risk of complications from COVID-19.
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The ongoing clinical studies based on mRNA technology
(mRNA-1273 fromModerna n. NCT04283461, and BNT162
from Biontech SE, n. NCT04368728) aim to evaluate the
safety, tolerability, immunogenicity, and potential efficacy
of different SARS-CoV-2 RNA vaccine candidates in the
adult population, with a specific attention to older people
(N.-N. Releases. NIH clinical trial of investigational vaccine
for COVID-19 begins. 2020. https://www.nih.gov/news-
events/news-releases/nih-clinical-trial-investigational-
vaccine-covid-19-begins). The lipid nanoparticle-
encapsulated mRNA-1273 vaccine, which encodes for the
full-length S protein, is currently evaluated in a dose-ranging
study in the adult population (18–55 years old), and in partic-
ipants from 56 to 70 and > 71 years of age (Fig. 5). Similarly,
the large dose-finding study with the BNT162 biological com-
ponent (7600 estimated participants) based on the administra-
tion of mRNA coding for the full-length S protein, or for the
two smaller receptor-binding domains, is going to test the
immunogenicity in adults (18–55 years) and older adults
(56–85 years).

An ongoing phase I/IIa trial (n. NCT04447781) is also
aimed at evaluating the safety, tolerability, and immunological

profile of the INO-4800 vaccine that, exploiting the DNA
technology, contains a plasmid encoding the full-length S gly-
coprotein. The INO-4800 vaccine is administered by intrader-
mal injection followed by electroporation in healthy adults
aged 19 to 64 years.

Another platform that is currently specifically tested in
older people is based on the Adenovirus type 5 vector that
encodes the S protein from the SARS-CoV-2 strain (trials n.
2020-001228-32; PACTR202006922165132; NCT0439814;
ChiCTR2000031781 and NCT04400838; Fig. 5). Different
studies are ongoing, and one conducted in Canada is a dose-
escalation designed study, from the younger adults (18 to <
55) to the older adults (65 to < 85). Another huge phase 2/3
study (n. NCT04400838) is aimed at determining the efficacy,
safety, and immunogenicity of the candidate COVID-19 vac-
cine based on the chimpanzee adenovirus vector (ChAdOx1
nCoV-19) in healthy UK volunteers, specifically divided in
adults (18–55 years old), elderly (over the age of 56), and
children (5–12 years old). The ChAdOx1 platform has already
been shown to be effective in the established rhesus macaque
model of SARS-CoV-2 infection [99]. In this pre-clinical
study, a single dose of ChAdOx1 nCoV-19 has protected six

Fig. 4 SARS-CoV-2 vaccine
candidates based on different
vaccine platforms. Schematic
representation of the different
vaccine platforms used for
developing SARS-CoV-2
vaccines. These include nucleic
acid (both mRNA and DNA);
subunit S protein with different
adjuvants; non-replicating viral
vectors (such as Adenovirus);
inactivated SARS-CoV-2 virus
alone or combined with
adjuvants; live SARS-CoV-2
attenuated virus; virus-like
particles and replicating viral
vectors (such as Measles virus,
Influenza virus, Vesicular
stomatitis virus, and others).
About 140 vaccine candidates are
currently involved in pre-clinical
studies, while 35 vaccine
candidates are worldwide tested
in clinical studies, and some of
them (indicated with *) have
already reached the phase III. For
each platform, the number of
ongoing clinical or pre-clinical
studies is reported. Data are
referred to the WHO report,
updated to 17 September 2020
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rhesus macaques from pneumonia caused by the virus [100].
Moreover, the ChAdOx1 has been used to develop investiga-
tional vaccines against several pathogens, including the close-
ly related coronavirus responsible for the MERS [101].
Adenovirus-based vectors are characterized by a broad range
of tissue tropism that covers both respiratory and gastrointes-
tinal epithelium, the two main sites that express the ACE-2
receptor of SARS-CoV-2, even though a possible
immunodominance mediated by vector genes rather than the
transgenes should always be considered [102].

Using the traditional recombinant protein technology to
express the spike protein, a trial sponsored by Clover
Biopharmaceuticals AUS Pty Ltd. (n. NCT04405908) is
assessing the safety, reactogenicity, and immunogenicity of
multiple doses of SCB-2019 administered with AS03 adju-
vant, or with CpG 1018 plus alum adjuvants. Data will be
separately analyzed on adult (18 to 54 years of age) and elder-
ly (55–75 years of age) healthy subjects enrolled in the study.
In another study, the S protein has been administered with the
Advax adjuvant (n. NCT04453852), a potent and safe
immunopotentiator composed of delta inulin [103].

Four trials are testing in the elderly population the
inactivated SARS-CoV-2 virus (n. NCT04456595;
ChiCTR2000031809; ChiCTR2000032459), and one of these
has been specifically performed only in people > 60 years (n
NCT04383574; Fig. 5).

Numerous other vaccine developers have indicated plans to
initiate human testing in 2020. Despite the several vaccine
candidates (Fig. 4), challenges including the need for optimiz-
ing antigen design and adjuvant formulation define the num-
ber of doses needed, induce the optimal immune response
without exacerbating the inflammatory and antibody-

dependent response involved in possible lung disease, and
fully define correlates of protection and duration of immune
responses have to be considered [104].

Finally, a general consideration for the SARS-CoV-2 vac-
cine development regards safety issues that could arise with
COVID-19 vaccines developed under the strong pressure of
the pandemic situation. Animal studies on vaccines for SARS-
CoV-1 and MERS-CoV report possible adverse effects medi-
ated by vaccine-induced antibodies that have poor or no neu-
tralizing activity [105]. Safety and efficacy are two indissolu-
ble properties of a vaccine to be administered to billions of
people globally and need to be accurately evaluated for every
SARS-CoV-2 candidate.

Systems biology and integrative analysis

The efforts in the development of COVID-19 vaccines
can benefit from the availability of most advanced tools
and high-throughput technologies to decipher the effec-
tive immune responses in the older population and the
correlates of protection. Recent advances in systems bi-
ology integrating clinical, immunologic, and omics data
can help to identify stable and robust markers of vac-
cine response and move towards a better understanding
of SARS-CoV-2 vaccine responses in the elderly.
Machine/statistical learning applied to multi-omics data
from clinical studies promises to revolutionize vaccine
development by illuminating the mechanistic drivers of
protective immunity. The high-performance data acqui-
sition methods in molecular and cellular biology push
the field of bioinformatics for the development and use

Fig. 5 Ongoing clinical trials of COVID-19 vaccines specifically
including the elderly population. Schematic representation of clinical
studies specifically including older people in the selection criteria of
volunteers. The platform used for each clinical trial is shown on the left.

The identifier number of the clinical trial and the number of volunteers
included (in brackets) are reported on the right. Bars represent the
partition of volunteers according to the age range. Data are updated to
8th July 2020
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of tools that manage and integrate the different levels of
biological complexity.

Application of the immunobiography approach could in-
form the stratification of elderly subjects and guide the imple-
mentation of vaccination strategies designed for specific el-
derly population clusters [87]. Mathematical modeling allows
the combination of different networks involved in biological
aging such as epigenetic networks, cell-cell networks, and
population genetics and can allow to generate hypothesis on
response to treatment or vaccination [106]. Recent progress in
mathematical modeling can be utilized to generate biomarker
models for prediction of disease and also response to vaccina-
tion taking into consideration biological age.

Currently, computational models have been applied to
immunology data, for example, for the analysis of a
high-dimensional dataset in vaccination studies [107,
108], but these models are limited to particular aspects
[109, 110]. There is the potential for these models to
become more sophisticated and to predict how responses
to pathogens and vaccines are affected by pre-disposing
factors [111, 112]. The systems vaccinology approach
has been applied to characterize the immune response
to different vaccines providing the proof-of-concept ev-
idence of the capacity of systems approaches to delin-
eate “molecular signatures” predictive of vaccine re-
sponses [113–131]. This approach has also been applied
to identify molecular signatures induced by immuniza-
tion with the rVSV-ZEBOV Ebola vaccine, recently ap-
proved for human use. Systems analysis has been con-
ducted integrating clinical, immunologic, and omics data
in clinical trials with different doses and in different
continents (Vianello et al. 2020 submitted, Santoro
et al. 2020 submitted).

Despite the great efforts made, unfortunately, many
of the most useful clinical and multi-omics datasets
are siloed in local databases to protect participant priva-
cy and data confidentiality. Creation of secure, FAIR-
compliant, federated learning databases in which predic-
tive biological and mathematical models based on AI/
machine/statistical learning can be developed, refined,
and tested on distributed datasets would have an enor-
mous impact in suppor t ing a ra t ional vaccine
development.

Concluding remarks

SARS-CoV-2 vaccines are urgently needed, and their design
should take into consideration that the elderly are the main
target population for vaccination. The pandemic is stimulating
the research on vaccine development, and this should be a
tremendous opportunity to specifically include age and gender
as critical factors for vaccination approaches and

effectiveness.While older adults are most likely to be severely
affected by COVID-19, they also may be less responsive to
vaccination. In the ongoing tremendous efforts for COVID-19
vaccine development, only a limited number of clinical trials
have included the older fraction of the population in the study
design, and the platforms used are not specifically designed
considering the peculiarity of the elderly immune system.
Indeed, vaccination strategies tailored for the SARS-CoV-2
infection in the elderly should take into consideration the del-
icate balance of immunosenescence and inflammaging with
the immunopathological aspects of the SARS-CoV-2 infec-
tion, such as the cytokine storm reported in severe COVID-
19. Therefore, the possible overlap between the factors ham-
pering vaccination effectiveness in the elderly and those that
boost the virulence and worsen the prognosis of SARS-CoV-2
infection should be carefully taken into consideration. Thus,
vaccine formulations, such as adjuvants and vectors, should
be specifically designed for stimulating the elderly immune
system without exacerbating the inflammatory status. The on-
going efforts in COVID-19 vaccine development should fully
exploit the availability of high-throughput technologies and
recent advances in systems biology to decipher the effective
immune responses in the older population and identify corre-
lates of protection to guide towards SARS-CoV-2 vaccine
strategies optimally designed to protect the older population.
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