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Abstract
The Coronavirus Disease 2019 (COVID-19) represents a severe multiorgan pathology which, besides cardio-respiratory
manifestations, affects the function of the central nervous system (CNS). The severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), similarly to other coronaviruses demonstrate neurotropism; the viral infection of the brain
stem may complicate the course of the disease through damaging central cardio-respiratory control. The systemic
inflammation as well as neuroinflammatory changes are associated with massive increase of the brain pro-
inflammatory molecules, neuroglial reactivity, altered neurochemical landscape and pathological remodelling of
neuronal networks. These organic changes, emerging in concert with environmental stress caused by experiences of
intensive therapy wards, pandemic fears and social restrictions, promote neuropsychiatric pathologies including major
depressive disorder, bipolar disorder (BD), various psychoses, obsessive-compulsive disorder and post-traumatic stress
disorder. The neuropsychiatric sequelae of COVID-19 represent serious clinical challenge that has to be considered for
future complex therapies.

Introduction: infectious pandemics as a risk factor
for psychiatric diseases
Human civilisation has always co-existed with parasitic

forms of life represented by bacteria and viruses that
invariably took the toll of life. When social, biological and
economic factors aligned, the infections became wide-
spread reaching the level of pandemic, which caused
massive death and misery; pandemics shaken the foun-
dations of society and turned the course of history and
mindset of humanity. The typhoid fever devastated
Athens in 490 BC thus giving the military society of
Sparta upper hand in Peloponnesian war, the Plague of
Justinian doomed the reincarnation of Roman empire,
while the Black Death, caused by Yersinia pestis that killed
a third of population of Europe, instigated tectonic
changes in economic relations that ultimately disposed of
serfdom and feudalism and laid foundations of Renais-
sance. The last global epidemic of Spanish flu responsible
for 20–50 millions deaths has coincided with First World

War, internecine conflicts and birth of bolshevism, which
all together brought the greatest confusion to mankind.
Movements of great masses of soldiers from the US
brought the H1N1 influenza A virus to Europe; disruption
of the health services, poor hygiene associated with
movements of people, devastations of war and malnutri-
tion all sparkled the superinfection with unusually high
death toll1.
All major pandemic, being associated with severe

environmental stress, affected human way of thinking and
human psychological health. Systematic studies aimed at
identifying pathogenetic mechanisms responsible for the
onset of psychiatric diseases following viral epidemics
begun in 19 century. The eminent English doctor, Henry
Holland in 1839 proclaimed that the flu was responsible
“of featured impairments of mental functions almost in
the same ratio of the body ……. and that the behavioural
alterations were not comparable to those secondary to
other fevers”1. Eighty years later Karl Menniger confirmed
the association between viral infection and psychiatric
morbidity: “one hundred cases of mental disease asso-
ciated with influenza in the recent pandemic have been
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studied at the Boston Psychopathic Hospital. The variety
of mental disturbance manifested is wide… they are
readily classifiable into four groups: delirium, dementia
praecox, other psychoses, and unclassified. Of these,
dementia praecox is the largest group numerically” 2.
Over the years the accumulated clinical evidence has

strengthened our knowledge of psychiatric features of
cerebral disease. In the past few decades the interest in the
putative aetiologic role of viruses has gradually enhanced
to enclose not only the organic mental disorders induced
by acute viral encephalitis and the slow viral infections of
the central nervous system (CNS) but also to encompass
the so-called functional psychiatric diseases such psy-
chosis, depression and bipolar disorder (BD). It has
became universally acknowledged that combination of
systemic infection, viral neurotropism and environmental
stress facilitates or even induces development of psy-
chiatric pathologies that exacerbate the course of pan-
demic and present a significant therapeutic challenge.

Neurotropism of coronaviruses
The Coronavirus Disease 2019 (COVID-19) pandemic

revives a long-forgotten challenge for humanity that lived
in (illusionary) mass infection free environment. Grap-
pling with the uncertainties of a newly emerged disease,
against which neither vaccine nor effective treatment
protocol exists, the mankind will likely subsist in a new
reality for months if not years before implementation of a
global remedy. How the virus interacts with our body and
which are the pathophysiological scenarios for acute
phase of the disease and long-lasting outcomes are the
critical questions to be addressed to identify medical
strategies.
The COVID-19 results from the infection with a novel

coronavirus that was first identified in China following an
initial outbreak in 20192. This coronavirus, named as
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) belongs to group 2B of β-coronavirus family3. The
SARS-CoV-2 is recognised as the seventh component of
the coronavirus family and has been included in the
orthocoronavirinae subfamily4. Coronaviruses are single-
stranded RNA viruses generally related to respiratory ill-
ness; they also (albeit less frequently) may instigate gas-
trointestinal and neurological disorders in a wide variety
of mammals and birds. The coronaviruses have high rates
of mutation and recombination as well as a propensity of
cross-species transmission5. The SARS-CoV-2 enters the
cell following binding to plasmalemmal ACE2 enzyme
with subsequent endocytic internalisation6,7. The primary
targets for the virus are represented by epithelial cells of
the lungs and gastrointestinal tract. Endocytosis of the

ACE2-virus complex also leads to a depletion of plas-
malemmal pool of ACE2 with consequent reduction in
conversion of Angiotensin II to Angiotensin 1–7; the
latter peptide possesses marked anti-inflammatory prop-
erties8,9 and the reduction of Arg 1–7 significantly con-
tributes to lung failure and the massive occurrence of
pulmonary fibrosis described in patients with COVID-
1910. Whether SARS-CoV-2 could penetrate cells through
alternative routes remains unclear, although in contrast to
other coronaviruses, SARS-CoV-2 does not bind to plas-
malemmal receptors such as aminopeptidase N and
dipeptidyl peptidase11.
The clinical presentation of COVID-19 is dominated by

respiratory signs with less frequent occurrence of gas-
trointestinal symptoms. The virus invasion is not limited
to these two organs, particularly considering that sig-
nificant expression of ACE2 is detected in other tissues,
including heart, kidney, endothelium and CNS12. Viral
infection of the brain13 may have multiple neurological
and psychiatric consequences, contributing to both the
acute phase of disease and its potential sequelae Fig.1. The
neurotropism has been well documented for several
β-coronaviruses including SARS-CoV-1, MERS-CoV and
the HEV 67 N virus of porcine hemagglutinating ence-
phalomyelitis14–19. Arguably, the primary way for SARS-
CoV-2 is associated with ACE2 expressed in neurones and
in neuroglia20–22 The ACE2 expressing neural cells are
found in the circumventricular organs, such as the sub-
fornical organ, the paraventricular nucleus, the solitary
tract and in the rostral ventrolateral medulla21. All these
regions have little protection of the blood brain barrier
(BBB) and all are involved in cardiovascular and respira-
tory regulation. The lack of BBB makes these CNS sites
vulnerable in many pathologies, such as various types of
systemic inflammation including sepsis-associated ence-
phalopathy, neuroinfection with bacteria, viruses or
parasites, stress and autoimmune encephalitis23,24.
Microglial cells localised in CVO seems to be in a state of
chronic activation in the attempt to limit the entry of
circulating neurotoxic molecules or invasive agents into
the parenchyma and to preserve cerebral homoeostasis25.
The SARS-CoV-2, similarly to other respiratory viruses,
could gain access to CNS through several routes, for
example by migrating through axons of the olfactory
nerve26. The intranasal infection of SARS-CoV-1 or
MERS-CoV27 was shown to result in rapid spread of viral
particles into the brain possibly through the olfactory bulb
by a retrograde axonal transport; viruses replicating in the
nasal cavity may utilise the direct link with the olfactory
bulb to colonise the CNS. In this paradigm the virus is
transported through the axons of olfactory bulb neurones
with subsequent infection of the specific type of neuroglia
the sustentacular cells of the olfactory bulb28. When the
virus was administered intranasally in extremely low

[2] Ravenholt, R. T., and Foege, W. H., 1982, 1918 influenza, encephalitis
lethargica, parkinsonism, Lancet, v. 2, p. 863.

SteardoJr. et al. Translational Psychiatry          (2020) 10:261 Page 2 of 12



doses, only the CNS was disseminated5, strengthening the
concept of an intrinsic neurotropism of coronaviruses. In
rodents ablation of the olfactory bulb prevented viral
spread following nasal infection29. Further support for the
role of nasal-olfactory route comes from clinical obser-
vations according to which anosmia develops early in
SARS-CoV-2 infected subjects30. The SARS-CoV-2 RNA
was present for 20 or more days in oropharyngeal and
nasopharyngeal secretion samples of 30% of COVID-19
survivors, suggesting that SARS-CoV-2 can linger for a
long time at both upper and lower respiratory tract31.
The virus can also enter the brain through infecting

endothelial cells lining brain vasculature; an electron-
microscopic analysis of the frontal lobe identified SARS-
COV-2 viral particles in the endothelium with some
indications for virus transit to the neuropil32. The SARS-
Cov-2 can enter the CNS using perivascular spaces of the
glymphatic system33. Furthermore, viruses can invade the
brain through other nerves, such as the trigeminal nerve,
which projects nociceptive terminals to nasal cavities34.
Similarly, sensory fibres of the vagus nerve, that innervate
the respiratory tract, can present another invasion route35.
Further evidence of the SARS-CoV-2 neuroinfection,
oedema and neuronal degeneration were reported in post-
mortem brain samples, while in a case of encephalitis
genome sequencing confirmed viral presence in the cer-
ebrospinal fluid36. Post-mortem analysis of nervous tissue
from tissue of a 54 years-old man who died from severe

respiratory failure associated with COVID-19 identified
SARS-COV-2 viral particles in the olfactory nerve, in the
gyrus rectus and in the brainstem with signs of profound
damage to all elements of the tissue including glial cells,
neurones, their axons and myelin37.
It seems therefore that SARS-CoV-2, similarly to SARS-

CoV-1 and MERS-CoV infects the brainstem, in which
the respiratory neuronal circuits are located, and, by
analogy, a similar infection could occur and contribute to
the respiratory failure, observed in SARS-CoV-2 pneu-
monia. Breathing depends on a central pattern generator
located in the dorsolateral pons, in the nucleus of the
solitary tract, and in ventrolateral medulla; this patter
generator is responsible for respiratory rhythms and
control of motor neurones innervating respiratory mus-
cles38,39. In a sub-population of COVID-19 patients’
respiratory failure is manifested by a decreased breathing
rate with hypoxia and hypercapnia. Many of these patients
remain in a coma for days, despite the suspension of
sedative treatment and the absence of apparent metabolic
alteration, indicating viral encephalitis, which often is
resolved without major sequelae40. This is not always the
case, however, and when the extent of respiratory failure
is overwhelming, patients die before the virus-induced
brain damage can become evident41. Given the viral load
in the brain stem, the subsequent reduction of ACE2
expression associated with the neuronal death, could lead
to an alteration in baroreceptors function associated with

Fig. 1 Neuropsychiatric sequelae of COVID-19. The SARS-COV-2 enters the body through various routes and causes systemic and tissue
inflammation. Systemic inflammation compromises the blood-brain barrier (BBB) and floods the brain with pro-inflammatory factors. The virus may
also cross the BBB at the level of the circumventricular organs or through retrograde axonal transport via olfactory bulb and infect the brain, thus
instigating reactive gliosis, which leads to an increased production and secretion of cytokines and other pro-inflammatory factors. The combination
of systemic inflammation, hypoxia resulting from respiratory failure and neuroinflammation may trigger or exacerbate psychiatric diseases.

SteardoJr. et al. Translational Psychiatry          (2020) 10:261 Page 3 of 12



an increase in the sympathetic tone and a severe, life
threatening rise in blood pressure42,43. The encephalitis,
reported as a complication of coronavirus infection,
invariably affects not only the brain stem but also thala-
mus and white matter26,44,45. These aspects have to be
taken in account by clinicians dealing with COVID-19
patients displaying severe cardiovascular and respiratory
failure. Recognizing that respiratory symptoms may, at
least in part, originate from the encephalitic damage to the
brain stem, may help to design more effective treatments.
The damage to the brain stem as well as to other brain

structures can also result from systemic inflammation,
often referred to as systemic inflammatory response syn-
drome or “cytokine storm”46,47. At the same time the
brain is a target for infectious toxic encephalopathy,
associated with systemic toxaemia or hypoxia that
accompany acute infectious diseases. Toxic encephalo-
pathies have massive neurological and psychiatric pre-
sentations and even cerebral oedema, which however
develops without accumulation of inflammatory markers
in cerebrospinal fluid48. In addition, systemic infection
and high levels of circulating cytokines often damage
microcirculation, inducing oedema and thrombosis; the
tromboembolia being reported in up to 30% of patients49.
The cytokines, furthermore, activate autonomic nerves
and hypothalamic-pituitary-adrenal axis which affect
blood pressure. All these factors together stipulate
ischaemic damage to the brain and are associated with
occurrence of strokes which further increase mortality in
COVID-19 patients50.

Neuroinflammation in COVID-19
Despite the existence of BBB, the brain and the spinal

cord communicate with the peripheral immune system,
and hence every systemic inflammation affects the CNS51.
In the context of COVID-19 the damage to BBB mediated
by a massive increase in circulating pro-inflammatory
factors is highly likely52. Compromised BBB allows an
inflammatory storm to engulf CNS leading to functional
damage. Once in the brain, peripheral inflammatory
molecules as well as inflammatory cells instigate neu-
roinflammation thus perturbing homoeostasis, altering
neural networks and inducing neuronal death53,54.
In the initial phases of systemic inflammation, antiviral

immunity can effectively blunt viral dissemination, since
reactivity of neuroglia and influx of surveying T cells can
remove infectious elements, preventing spread without
any further tissue damage55. In severe COVID-19, sub-
stantial release of chemokines and interleukins associated
with systemic inflammation and the marked lymphopenia
allow higher and a more prolonged persistence of a viral
load; consequently deficient clearance of the virus toge-
ther with the reactive gliosis can perpetuate neuroin-
flammation56–58. Even in mild cases, SARS-CoV-2

pneumonia causes hypoxia, which on its own can trig-
ger or exacerbate inflammatory response of the CNS.
Cerebral hypoxia activates key inflammatory transcription
factors, including NF-κB and hypoxia inducible factor
which stimulate overproduction of pro-inflammatory
messengers59, trigger glial reactivity60,61, induce mito-
chondrial oxidative damage, and activate promoter region
of numerous miRNAs, crucial for regulating gene expres-
sion during inflammation62. An excessive glial reactivity
due to persistent exposure to pro-inflammatory cytokines
also contributes to synapse loss and neuronal death63,64.
The impact of SARS-COV-2 infection on the brain is

associated with excessive physical and psychological stress
that stimulates the hypothalamic-pituitary-adrenal axis
thus further exacerbating neuroinflammatory status65.
The duration and frequency of exposure to stressors
impacts neuroinflammation. In this sense while a
response to short and moderate stressors could be bene-
ficial, repeated or extended exposure to strong stressors
exacerbates inflammation66. Exposure to long-lasting
stress enhances inflammatory response through the
release of several pro-inflammatory factors, which trigger
down-stream signalling pathways, including NF-κB-
dependent transcription. Contribution of glucocorticoids,
associated with stress response, to sustaining and pro-
moting neuroinflammation is complex, going beyond
effects deriving from the activation of the signals down-
stream of their receptors67. Microarray experiments
demonstrated that glucocorticoids drive expression of
specific gene profiles, whereas concurrent co-activation of
glucocorticoid receptors and NF-κB-dependent tran-
scription induces a peculiar pattern of gene expression
different from the one resulting from separate activation
of each signalling pathway68. Neuroinflammation is a
significant aetiological factor for a large number of neu-
ropsychiatric and neuro-cognitive diseases, including
neurodegenerative disorders69–71, depression72, psy-
chosis73, autism74, drug abuse75, sleep disorders76 and
epilepsy77. The neuropsychiatric burden of this pandemic
is currently unknown, but is likely to be considerable.
Based on the results from investigations of recent epi-
demics by corona respiratory viruses, SARS-COV-1 and
MERS-COV, it is possible to assume that a significant
percentage of subjects recovering from pneumonia do not
fully regain their previous emotional state and cognitive
abilities. Indeed, a study of neuropsychiatric consequences
of SARS-COV-1 performed at 30–50 months after the
infection demonstrated an occurrence of 40% of post-
traumatic stress disorder (PTSD), 36.4% of depression,
15.6% of obsessive convulsive disorder, and an equal
incidence for anxiety disorders78. Furthermore, a meta-
analysis among SARS-COV-1 patients of mixed condi-
tions showed neurocognitive deficits up to 18 months
post-discharge79, including mild cognitive impairment80.
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Given this evidence the burden of long-term post-SARS-
CoV-2 delirium and dementia may be notable, especially
for elderly subjects who are more vulnerable to post-
infectious neurocognitive sequelae. The average age of the
subjects with severe COVID-19 is around 63 years,
whereas patients under the age of fifty represent only 26%
of all clinical cases. The ageing itself is the major risk
factor for cognitive pathologies and neurodegeneration;
severe systemic diseases as well as stress are known to
provoke or accelerate cognitive decline in elderly. In the
aged brain the neurogenesis is dwindling, synaptic plas-
ticity deteriorates, metabolism is reduced and overall
brain vulnerability to exogenous insults is increased.
Ageing of the human brain is also associated with
degeneration and atrophy of microglia and astrocytes
which diminishes homoeostatic and neuroprotective
support and again increases brain susceptibility to
pathology81–84. Infection with SARS-CoV-2 (even in
moderate clinical cases) thus promotes cognitive dis-
orders with emergence of delirium, acute psychosis,
exacerbation of mild cognitive impairment or with
accelerating of dementia associated with various neuro-
degenerative conditions, including Alzheimer’s disease
(AD)85,86. Conceptually, neuroinflammation contributes
to the pathological development of neurodegeneration
and often is considered as a common, even unifying fea-
ture of neurodegeneration87, while brain infection and
ischaemic insults by themselves can trigger neurodegen-
erative process and instigate dementia88.
It is a truth universally acknowledged that systemic

inflammatory challenge accelerates cognitive impairment,
which implicates that the infection itself, as well as
aberrations of the innate immune system, is responsible
for the cognitive deficits89. Epidemiological observations
as well as neuropathological analysis support the notion of
a direct correlation between systemic infections, neu-
roinflammation and cognitive disorders, such as delirium
and AD90,91. In this context, cohort studies identified
pneumonia as the pre-eminent pathology responsible for
hastening and boosting cognitive decline92. At the same
time vaccinations against bacteria or viruses reduce the
risk of the progressive evolution of dementia93. Close
correlation between pneumonia and delirium in the
elderly is a long-standing observation, and delirium,
which represents the most common event of acute brain
dysfunction, is a frequent complication of COV-19 clin-
ical progression, perhaps due to the neurovirulence,
severe peripheral inflammation, profound stress; even
“social distancing” and loneliness which elderly experi-
ence during pandemic contribute to psychotic episodes94.

COVID-19 and major depression
Systemic and tissue immune response contribute to the

pathophysiology of numerous neuropsychiatric diseases

through modifying neurochemical environment, synaptic
transmission and plasticity, synthesis and secretion of
neurotrophic factors, neurogenesis, and brain con-
nectome. In this context, the major depression disorder
(MDD) is one of the most frequent neuropsychiatric
disorders linked to inflammatory injury to the brain. A
large body of evidence has associated depression symp-
toms to pro-inflammatory factors95 and neuroglial fail-
ure96. This link specifically applies to subtypes of
depression occurring in the elderly. Ageing substantially
affects the levels and the activity of pro-inflammatory
cytokines in the CNS. Systemic infection can itself trigger
major depression in elderly patients, because of age-
dependent decrease of immune homoeostasis97. In parti-
cular increased serum levels of interleukin-1β directly
correlate with emergence of late life MDD98. Similarly, a
correlation has been observed between inflammatory
factors and some specific symptoms, for example, high
levels of TNF-α and IL-2 associate with apathy and motor
inhibition, whereas IL-6 associates with anhedonia and
suicidality99. The levels of cytokines decrease when
patients recover normal mood levels; conversely cytokines
remain elevated in patients resistant to treatment100,101.
Severe cases of COVID-19 are almost invariably

accompanied with excessive host immune response,
mainly characterised by a massive increase in plasma
levels of IL-6, which directly correlates with an unfa-
vourable outcome of the disease102. At the same time
abnormally high concentrations of IL-6 were detected in
the cerebral spinal fluid of suicide attempters103, of sub-
jects suffering from either depression or schizophrenia104,
of old depressed patients105,106 and of mothers with post-
partum depression107. A large body of evidence demon-
strated that changes in IL-6 levels, both in plasma and in
the brain, are implicated in the emergence of depression,
although other factors, environmental or genetic in nat-
ure, provide an important contribution108. In the CNS IL-
6 acts as a pro-inflammatory mediator, which promotes
synthesis and secretion of additional inflammatory factors
and acute phase proteins by astrocytes and microglia109.
Thus IL-6, together with TNF-α and IL-1β, can be con-
sidered as one of the primary regulators of the immune
response in the brain, while astrocytes and microglia are
the major responders to IL-6, as well as prominent pro-
ducers of IL-6 stimulated by damage and pathogen-
associated molecular patterns (including viruses and their
components), neurotransmitters and pro-inflammatory
messengers63,110–113. Physiological plasma levels of IL-6 in
adults range between 1–10 pg/ml whereas in a systemic
inflammation is raises to several ng/ml;114 and even
higher concentrations were reported for COVID 19115.
Incidentally, high levels of IL-6 have been detected in the
plasma, in the cerebrospinal fluid (CSF) and in the post-
mortem prefrontal cortex of subjects with suicidal
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ideation, with non-fatal suicide attempts or committed
suicides116. At the same time no direct correlation was
found between plasma and CSF concentrations of IL-6 in
subjects with suicide attempts, nor such correlation was
detected for scores of depression severity117. The IL-6
levels in circulation also correlated with suicide endo-
phenotypic behaviours, such as personality trait disorders,
aggressivity and impulsivity118. This is in agreement with
numerous findings proving the role of cytokines in reg-
ulating emotions and behaviours through interacting with
specific brain areas and different neuronal pathways119.
COVID-19 pandemic resulted in significant changes in
lifestyle and interpersonal relationships condemning
many to prolonged loneliness. These conditions of psy-
chosocial stress can also have a detrimental effect on the
most fragile subjects affecting their ability to modulate
emotions120. Decreased control over impulsivity and
feelings of fear in combination with inflammatory chal-
lenges to the brain might increase the risk of suicide.

COVID-19 and bipolar disorder
Abnormal balance between the pro-inflammatory (IL-6

and TNF-α) and anti-inflammatory cytokines in the CNS
and in the plasma have been repeatedly observed in
patients with BD supporting the notion that neu-
roimmune response may be a prominent factor con-
tributing to aetiopathogenesis of this illness121,122. In
acute phases of BD either during manic or depressive
episode, an activation of inflammatory cascades were
reported, which was considered by many, but not by all, a
characteristic feature of the acute illness, rather than a
persistent trait of the disease123. Several cytokines, such as
IL-1β, TNF-α, IL-6, interferon-γ were found to increase in
circulation in acute phases of BD, with a parallel reduction
in the anti-inflammatory factors IL-10 and transforming
growth factor β-1, especially in the manic phase123,124.
Analysis of the presence of pro-inflammatory molecules

in the CSF in BD patients revealed contradictory results.
Somewhat high CSF levels of IL-8, monocyte chemoat-
tractant protein 1(MCP-1 / CCL-2), and neurofilament
light chain were detected in BD subjects, although these
biomarkers did not correlate with the outcome of the
disease125. A meta-analysis of CSF cytokines content in
BD subjects revealed increased levels of IL-1β, the IL-8
showed statistically insignificant rise and no changes for
IL-6 were detected126. The disparity between the levels of
interleukins and chemokines in blood serum and in the
CSF is another controversial issue. It is of course tempting
to assume that this discrepancy is lost in COVID-19 since
the overload of interleukins and chemokines, compro-
mised BBB and activation of CNS resident and invading
immune cells exacerbates the neuroinflammation and
promotes a bidirectional flow of inflammatory messengers
through a permeable barrier. Such a scenario, however,

remains highly hypothetic and much more investigations
and analysis are needed to reveal possible association of
viral infection in general and COVID-19 in particular
with BD.

COVID-19 and reactive psychosis
A wide spectrum of immune system dysregulations as

well as infections (together of course with genetic vul-
nerability, abnormalities in neurotransmission, stress and
exposure to environmental factors such as childhood
maltreatment) are recognised as potential pathogenetic
factors of reactive psychosis127. Enhanced inflammation in
psychosis has been confirmed by meta-analyses showing
increased concentrations of cytokines and their receptors
in chronic schizophrenia, as well as in drug-naïve patients
in their first episode of psychosis (FEP)128. A recent study
aimed at investigating pro-inflammatory cytokine profile
in FEP patients showed an up-regulation of IL-6, TNF-α
and IL-1β, which was not found in healthy siblings, sug-
gesting familiar vulnerability is not involved in generating
the inflammatory-related psychotic reactions129.
In an attempt to conceptualise the risk of the emergence

of psychosis in subjects infected with SARS-COV-2, it
should be emphasised that high levels of IL-6, correlate
with reduced hippocampal size in schizophrenic sub-
jects accounting, at least partially, for their cognitive
deficits130. Moreover, elevated levels of IL-6 were
detected in CSF of schizophrenic subjects104. Even
more intriguing is the observation that high levels of
IL-6 in adolescents correlate positively with the
occurrence of psychosis later in life131.

COVID-19 and obsessive-compulsive disorder
A growing body of literature reported the occurrence of

obsessions and compulsions in patients who had recently
recovered from viral encephalitis132. Already in 1930s
more than a third of cases of obsessive and compulsive
disorders (OCD) were recognised an organic in patho-
genesis, and linked with Von Economo’s encephalitis133.
Subsequently, neuropsychiatric literature was dotted with
numerous case reports ranging from those of obsessive
syndromes with post-encephalitic parkinsonism134, to
those of post-encephalitic subjects in which diabetes
insipidus coexisted with OCD135, to the six OCD patients
with anamnesis of viral encephalitis136. Beside these early
examples, more recently, high levels of Borna virus
immune complexes and viral components (proteins,
RNA) were detected in the blood and in peripheral
mononuclear cells of OCD patients, reinforcing the
notion of a significant link between viral infection and
OCD in predisposed subjects137. In this scenario, since
functional neuroimaging demonstrated OCD implies
alterations in the striato-thalamo-cortical circuits, it was
of interest that activity of these circuits may be affected in
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viral infection, possibly through interferences with gluta-
mate transmission138.
Beyond any doubt immune dysfunction plays a causa-

tive role in childhood-onset OCD where the sudden onset
of obsessive compulsive signs and tics occurs in the
aftermath of a streptococcal infection, with subsequent
production of auto-antibodies against neuronal antigens
of the basal ganglia139, further supporting the notion that
an alteration of the immune system may be implicated in
the pathobiology of these disorders. Numerous investi-
gations have shown a correlation between circulating pro-
inflammatory cytokines levels and OCD140,141. Increase in
blood concentrations of IL-1β, IL-6 and TNF-α in OCD
patients was detected when compared to normal controls
paired by gender, age, and educational level142. These
findings are in agreement with results of studies investi-
gating drug-naïve, comorbidity-free OCD subjects143. The
observation that pro-inflammatory cytokines are
increased in a study that eliminated any confounding
factors, such as anxious or depressive comorbidity or the
effects of psychotropic drugs, represents a more convin-
cing support for the idea that immunological abnormal-
ities contribute to the origin of OCD141. Systemic
inflammation which is the prominent feature of COVID-
19 may therefore trigger OCD in surviving subjects.

COVID-19 and epilepsy
Extensive literature reports epilepsy and behavioural

abnormalities as closely linked pathologies144. Indeed,
psychiatric diseases are more frequent in epileptic sub-
jects than in general population irrespective of the time of
seizures onset, which could occur either before or after
the appearance of psychiatric disorders, suggesting a
mutual relationship and potentially shared aetiology145.
This intriguing coexistence of psychiatric features in
epileptic patients does not represent a coincidence or an
ordinary comorbidity but more likely it reflects inter-
connected pathobiological processes146. Neuroinflamma-
tion may hint to the underlying mechanism shared by
epilepsy and psychiatric disorders, albeit with distinct
involvement of neuronal substrates77. This makes any
rigid separation between epilepsy and some psychiatric
disorders less stringent, and hence we included epilepsy in
the discussion for the remarkable behavioural alterations
and for the role of neuroinflammation in its pathogenesis.
The link between epilepsy and neuroinflammation is

universally recognised77. Persistent neuroinflammatory
cascade due to cytokine load and BBB damage is asso-
ciated with glial reactivity, synaptic changes, and the
generation of hyper-excitable networks with lower seizure
threshold which all promote epileptic activity147. Epide-
miological findings have indicated neuroinfection and
systemic infections as one of major cause of acquired
epilepsy148,149. Viral encephalitis, for example, increases

the risk of subsequent seizures149. Increased concentra-
tions of IL-1 were detected in plasma and CSF of different
epileptic phenotypes, suggesting this cytokine seizure-
inducing properties150. Changes in GABAergic-
transmission and reduction of astrocytic glutamate
uptake may account for IL-1 dependent increase in sus-
ceptibility to epilepsy151,152. Similarly, raised levels of IL-6
were reported in both plasma and CSF in patients suf-
fering from a wide range of epileptic presentations, while
this increased concentrations correlated with the severity
of seizures153. Capability of IL-6 to promote epilepto-
genesis is further corroborated by the evidence that IL-6
overexpression induces abnormal ictogenesis in mice
hippocampus154. Associations between epilepsy and
COVID-19 have not yet been reported155, however,
American Epilepsy Society already suggested that
COVID-19 could increase the risk of sudden unexpected
death in epilepsy (SUDEP). There are some reports which
indicate that infections, bacterial or viral may increase the
risk of SUDEP. At present, there are no data on the
association between COVID −19 and SUDEP156.

COVID-19 and post-traumatic stress disorder
Generally, albeit incorrectly, it is assumed that once the

trauma is over and the subject is no longer under the
pressure of stress, the path for steady recovery begins,
since the time heals all wounds. Unfortunately, this is not
always the case because in susceptible subjects the active
stress instigates brain processes whereby traumatic
memories suddenly re-emerge and disturb the mental
health. The persistence of these conditions generates the
PTSD157. The PTSD is no longer classified among anxiety
disorders; it is considered a trauma or stress-related dis-
order158. The pathogenetic link between inflammation
and PTSD is well documented159. Because of marked
impact of stressors on the immune system, it is not sur-
prising that PTSD is associated with the immune state160.
Increased concentrations of pro-inflammatory factors
were observed both within systemic circulation and in the
brain in the context of PTSD161. Activation of neuroglia
induced by heavy or persistent stressors can stimulate
aberrant secretion of pro-inflammatory signals which
could potentially facilitate the appearance of PTSD. Data
from meta-analyses confirm a remarkable increase in pro-
inflammatory molecules in subjects with PTSD, including
IL-6, TNF-α, and IL-1β162–164. The levels of IL-10, an
anti-inflammatory interleukin, have been also increased,
probably in an attempt to offset the inflammatory pro-
cesses triggered by stress, further highlighting a close link
between inflammation, stress and PTSD165. The occur-
rence of PTSD was usually associated with occurrence of
low-grade inflammation166. Beside changes in cytokines,
PTSD is also connected with enhanced NF-κB expression,
this transcription factor being implicated in the
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inflammation process and its elevated expression corre-
lated directly with PTSD severity167. Moreover, PTDS is
usually comorbid with depression as well as with anxiety,
with drug addiction and with high frequency of suicide,
since all these conditions share common inflammatory
mechanisms into their pathogenetic processes168. How-
ever, it remains to be elucidated whether in all cases the
relationship is mutual and what factors, along with the
inflammatory ones, play a causative role in determining
the comorbidities observed. The PTSD can be a likely
outcome for COVID-19 sufferers. This stems not only
from severity of systemic inflammation and viral invasion
into the brain, but also from the gravity of stress caused by
an unexpected pandemic which, for the high mortality,
has a shocking value.

Schizophrenia and viral infection
Significant number of psychotic episodes in the after-

math of Spanish flu pandemic has highlighted the possi-
bility of increasing incidence of schizophrenic disorders in
subjects infected with the SARS-COV-2169. High levels of
coronavirus immunoreactivity in subjects with recent
onset of psychotic episodes as well as the serious neu-
ropsychiatric complications including auditory and visual
hallucinations as well as severe delusions have been
reported in COVID-19 patients120,170,171. Although neu-
rodevelopmental origins of schizophrenia are generally
accepted, other aetiological factors such as direct effect of
a viral neuroinfection or indirect effect of immune aber-
rations occurring in adult subjects cannot be excluded172.
Schizophrenia is also considered as a neurodegenerative
illness in adulthood, with neuronal shrinkage and loss,
oligodendrocyte damage, alterations in synaptic con-
nectivity, all likely associated with cognitive impair-
ments162–173. Although there are no evidence directly
linking COVID-19 with the risk of schizophrenia, fre-
quent occurrence of psychotic episodes highlights the
need for further, more detailed investigations.

Conclusions
The SARS-COV-2 pandemic poses a long-lasting chal-

lenge, which not only affects cardio-respiratory system
but links systemic infection to neuropsychiatric diseases.
Investigations of previous viral respiratory epidemics have
demonstrated the onset of a wide range of psychiatric
disorders over the course and in the aftermath of the
infection. The pandemic of Spanish flu in 1918–1920
instigated speculation of the causative role of viral infec-
tion in the pathogenetic mechanism of behavioural dis-
orders in bipolar and schizophrenic subjects. Karl
Menninger was one of the first to declare that he was
persuaded that dementia praecox (as schizophrenia was
called in those days) is, in majority of instances, a soma-
topsychosis, “the psychic manifestations of an

encephalitis”174. In the same period, Jacob Kasanin and J.
W. Petersen suggested that “a thorough review of some of
the early histories of atypical cases of schizophrenia or
affective disorders may reveal a previous encephalitis”175.
At present, there are few preliminary studies consider-

ing neuropsychiatric complications of COVID-19, how-
ever, on the basis of the results of the previous epidemics
of various respiratory viruses it is possible to assume an
increased incidence of mental pathologies as an unwanted
sequelae. Not only SARS-COV-2 can penetrate the brain
and cause direct damage to neuronal networks, the
experience of potentially lethal and untreatable COVID-
19 is the cause of a severe distress, which may induce long
term behavioural changes or aggravate a pre-existing
mental illness. Here we outlined possible neuropsychiatric
complications that could arise in subjects infected with
SARS-COV-2. Patients with COVID-19 could present
with a wide range of neuropsychiatric symptoms, which
result from systemic inflammation, CNS effects of cyto-
kines, infection of neural cells by SARS-COV-2, neu-
roinflammation, glial dysfunction or aberrant epigenetic
modifications of stress-related genes. This review was
intended to draw special attention to the psychiatric
aspects of COVID-19, because minimizing their relevance
by claiming that sometimes “an abnormal reaction to an
abnormal situation is a normal behaviour”176 could be an
unforgivable mistake.
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