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Data mining and model‑predicting 
a global disease reservoir 
for low‑pathogenic Avian Influenza 
(AI) in the wider pacific rim using 
big data sets
Marina Gulyaeva1,2, Falk Huettmann3*, Alexander Shestopalov2, Masatoshi Okamatsu4, 
Keita Matsuno4,5, Duc‑Huy Chu6, Yoshihiro Sakoda4,5, Alexandra Glushchenko2, 
Elaina Milton7 & Eric Bortz7

Avian Influenza (AI) is a complex but still poorly understood disease; specifically when it comes to 
reservoirs, co‑infections, connectedness and wider landscape perspectives. Low pathogenic (Low‑
path LP) AI in chickens caused by less virulent strains of AI viruses (AIVs)—when compared with highly 
pathogenic AIVs (HPAIVs)—are not even well‑described yet or known how they contribute to wider AI 
and immune system issues. Co‑circulation of LPAIVs with HPAIVs suggests their interactions in their 
ecological aspects. Here we show for the Pacific Rim an international approach how to data mine and 
model‑predict LP AI and its ecological niche with machine learning and open access data sets and 
geographic information systems (GIS) on a 5 km pixel size for best‑possible inference. This is based on 
the best‑available data on the issue (~ 40,827 records of lab‑analyzed field data from Japan, Russia, 
Vietnam, Mongolia, Alaska and Influenza Research Database (IRD) and U.S. Department of Agriculture 
(USDA) database sets, as well as 19 GIS data layers). We sampled 157 hosts and 110 low‑path AIVs 
with 32 species as drivers. The prevalence across low‑path AIV subtypes is dominated by Muscovy 
ducks, Mallards, Whistling Swans and gulls also emphasizing industrial impacts for the human‑
dominated wildlife contact zone. This investigation sets a good precedent for the study of reservoirs, 
big data mining, predictions and subsequent outbreaks of HPAI and other pandemics.

Influenza A virus infections are a significant problem affecting the health of wild and domestic animals and 
public  health1. The genetic diversity of avian influenza viruses (AIVs) is assumed to be maintained by their 
circulation in wild aquatic bird populations  (see2–6 for Pacific Rim region). Avian influenza (AI) is a complex 
but poorly understood disease which is based on many strains. Some of those are not fully described and are 
highly pathogenic (hi-path HP, as defined in chicken ). The majority of them is classified as lower pathogeny 
(low-path LP); those are still underestimated, insufficiently studied and little surveyed even. It has been sug-
gested, but poorly studied, that those AI strains actually co-occur and interact. The prevalence of AI viruses in 
wild birds varies greatly by species, age, season and geographical location. While species surveying is unequal 
the highest known prevalence of the 16 haemagglutinin (H1—H16) and nine neuraminidase (N1—N9) sub-
types is observed in birds belonging to the Anseriformes and Charadriiformes  orders7,8. Due to its virulence, 
public focus, main research attention and subsequent funding sits on high-path AI, whereas the ecologically 
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more relevant low-path AI and its contributions are widely ignored, certainly understudied and consequently 
not so well managed.

However, the rapid and unpredictable evolution of AI viruses leads to the emergence of new influenza virus 
strains and subtype combinations, which potentially point towards a global  pandemic3,4,8. Outbreaks of AI 
virus infections are known to have serious consequences for animal health and may result in major economic 
losses for the poultry  industry9 including product mis-trust, fear, massive financial loss, trade interruption and 
food insecurity. It’s probably not helpful, and arguably quite dangerous to ignore LP AI in this discussion as it 
is likely a major stepping stone for any so-called HPAI and pandemic. This is even more important given that 
co-occurrences of diseases in vectors are likely.

There are well-known landscape hotspots of  HPAI9, and likely those link with LPAI occurrences and move-
ments as the underlying pool (reservoir). Those AI patterns are increasingly geo-referenced and tracked for 
origins, nations, and for continents (6e.g. https ://www.fludb .org/,  see9 for application), but wider international 
and cross-continental linkages are hardly coordinated nor well known or studied yet. Since hi-path AI usually 
comes from areas and hotspots with abundant low-path AI likely it forms a resilient reservoir. But those AI 
reservoirs and consistent hotspots are also not well identified or studied nor is it understood how they behave 
over time and seasons  (see9 for polar breeding seasonalities).

To get closer to such type of questions, here we focus on the northern Pacific Rim, a region between North 
America and Asia, namely Alaska, Russia, Japan and Vietnam (Fig. 1;  see2,9 for an application). This region is 
known to be connected through various animal migration patterns  (birds2  and10, marine mammals, mammals, 
fish and sea turtles), as well as climate regimes. Using the ‘best available’ scientific information on AI for those 
nations, we then try to obtain alternatively validated AI samples to draw generalizable inferences explicit in 
space and time.

Methods
Study area. The study area consists of the wider northern Pacific Rim area which is known to be an exchange 
frontier between diseases and cultures (Fig. 12,9). We followed methods outlined  in5,11,12 and  specifically13 draw-
ing inference from predictions.

The conducted international landscape investigation in this study area is described in a research workflow 
(Fig. 2), and it mainly consists of different steps: field work, open access data compilation, data cleaning and lab 

Figure 1.  Study area of eASIA project and sampling sites in the Pacific Rim.

https://www.fludb.org/
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work, GIS mapping, data mining and prediction, reflection and inference, as further described below (for more 
clarifications or questions please contact authors).

Field work. As part of the eASIA program the field sampling of AI was conducted in Russia and Japan pri-
marily during the fall (August) 2016, 2017 and 2018. Fall is a season when birds finished breeding and started to 
migrate southwards to their wintering sites. Birds are known during that time to disperse relatively slowly along 
 flyways10,12,14,15. Traditionally, this time period has the highest known prevalence of virus, thus  far9 In Vietnam, 
the surveillance targeting domestic birds was conducted in summers and falls. Together with all eASIA partici-
pants, we extracted data from an agreeable compatible workflow and protocol that allowed for geo-referenced 
and time-referenced AI samples in the field. Hunters were not directly involved in the study (see permits for bird 
specimen details). In Russia, following their lab method protocol and according to standard  procedures16,17 it 
resulted in 52 samples (10 LPAI presences) from years 2016 and 2017 with 13 unique locations. In Japan, their 
respective lab method protocol was followed (details  in18) resulting in 203 samples from years 2016 and 2017 
based on 5 unique locations. In Vietnam, the lab method protocol of Japan was followed (details  in19) resulting 
in 1,182 samples (951 LPAI presences) from years 2016 and 2017 based on 102 unique locations. Finally, we were 
also able to obtain 407 samples (395 LPAI presences) for Mongolia for 27 unique locations, also following the 
protocol from Japan. Alaska was not part of field campaign but had data available through the IRD ‘flu’ database 
(see details below).

All field data were compiled into one eASIA database for further analysis (Appendix 1), namely to carry out 
data mining, model-training and subsequent predictions with machine learning and geographic information 
system (GIS; details  in9,10).

Compilations of open access AI data. To reach across the Pacific Rim for a wider and more robust 
inference, and to make a connection with North America and other available data, further AI data from Alaska 
were obtained from the IRD database online (https ://www.fludb .org/brc/home.spg? Decorator = influenza). This 
resulted in 38,517 samples (448 low-path AI presences) from 1,175 unique locations. We then queried all these 
data for low-path AI strains which resulted in 110 strains and 40,837 samples from 157 host species entries that 
we used for this study (see Appendix 2 for details). To our knowledge, that is the biggest and most diverse AI 
database ever compiled and analysed for the Pacific Rim (see Herrick et al. 2013 for a first initial model and 
using all of AI).

Data mining of low‑path AI. We queried the obtained data for the number of low-path AI strains, host 
species distribution, proportion of host species carrying a specific low-path AI strain, and prevalence.

Figure 2.  Workflow of this study to obtain best-available AI data and to data mine and predict them with 
machine learning in a geographic information system (GIS) for best-possible predictions and inference for the 
Pacific Rim study area (IRD = Influenza Research Database; USDA = U.S. Department of Agriculture); for more 
details, model specifications etc. see manuscript text.

https://www.fludb.org/brc/home.spg
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Compilations of open access GIS data layers for the study area. GIS layers are used as predic-
tors for model-predictions in the study area. Here we used 19 global GIS layers available from earlier research 
(Sriram and Huettmann unpublished https ://www.earth -syst-sci-data-discu ss.net/essd-2016-65/; Table 1). For 
polygon outlines we used data with our ArcGIS UAF campus license (FH). All GIS data layers were displayed for 
the study area as a Mercator projection using WGS84, decimal degrees coordinates (latitude and longitude) with 
a precision of 6 decimals (GPS and GIS, a real world precision of 5 decimals).

GIS mapping and data processing. We used commercial and open source GIS softwares (ArcGIS, QGIS) 
to operate, map and overlay all data. We imported the AI Data from ASCII table (MS Excel) into a shapefile layer 
of AI, and overlaid them with 19 environmental GIS layers we had available from compiled global data sets. This 
resulted into a data cube that is analyzed with data mining and for modeling and predictions.

Modeling and predictions. The resulting data cube was imported into SPM 8.2 (https ://www.minit 
ab.com/en-us/produ cts/spm/) and then modeled and predicted. We ran a stochastic grading boosting (TreeNet) 
algorithm for best-possible predictions and inference (20see  also9,10,12,21; for an R implementation  see22). As out-
lined  in9,12,21 we started with default settings for this powerful software as they are known to achieve best infer-
ence, as taken from the predictive  performance13. Models then used 6 Maximum nodes per tree, 10 Cases as 
a Terminal Node Minimum, 200 trees to converge, a balanced class weight and a ten-fold cross-validation (a 
repeated 90% training vs 10% testing setting) optimizing on the ROC. To avoid overfitting we used an auto learn 
rate and a 50% subsampling. The resulting tree model was stored as a grove and applied to an equally-spaced 
lattice of the predictors (excluding species information). The maps were presented in GIS with a resolution of a 
5 km pixel size (Appendix 3).

Model assessment data. We were able to obtain two alternative data set on AI for an assessment of our 
predictions. The Influenza Research Database (IRD) has an Asian subset (n = 28,205 and 19,405) comparable to 
our work, and which was used to confront our predictions for the study area.

Although the U.S. Department of Agriculture (USDA) has a U.S-wide AI survey data set (3,589 for Alaska), 
it actually lacks geo-referencing with coordinates (just done by counties etc.) and just includes H5, H7 Avian Flu 
columns; presumably done trying to protect the industry. We still used this best-available alternative data set for 
further assessment of the model predictions.

Ethics statement. For this eASIA project oropharyngeal and cloacal samples in Russia were collected 
according to the “Federal Law on Hunting and Sharing of Hunting Resources of Russian Federation # 209-ФЗ” 
and with the permissions of local governments in hunting regions during each hunting seasons. Hunted birds 
were provided for sampling by licensed hunters to our group during expeditions.

Table 1.  List of GIS Predictors used in this study to data mine and predict low path (LP) Avian Influenza (AI) 
* * Source and details: Except for host species those data come from Sriram and Huettmann (unpublished; 
https ://essd.coper nicus .org/prepr ints/essd-2016-65/).

Predictor Number Predictor Group Predictor name Meaning

1 Species Host species
Species that was caught and samples for AI assessment. This predictor is an attribute of the field-based AI 
lab data and used in the data mining but it’s not GIS-based and not used in creating the GIS map predic-
tions

2

Landscape classification

Koeppen–Geiger A widely-used landcover scheme

3 GLC2000 A modern scheme of landcover classes

4 NPD NPD

5
Livestock

Poultry density Map of density of poultry per pixel

6 Pig density Map of density of chicken per pixel

7

Precipitation

March Rainfall in March

8 June Rainfall in June

9 September Rainfall in September

10 December Rainfall in December

11

Temperature

March Temperature in March

12 June Temperature in June

13 September Temperature in September

14 December Temperature in December

15
Proximity

Proximity to roads Road closeness

16 Proximity to coastline Coastal or not

17 Cyclone Cyclone Cyclone occurs in that area, or not

18
Topography

Altitude Altitude above sea level

19 Slope Slope in degrees

https://www.earth-syst-sci-data-discuss.net/essd-2016-65/
https://www.minitab.com/en-us/products/spm/
https://www.minitab.com/en-us/products/spm/
https://essd.copernicus.org/preprints/essd-2016-65/
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Fecal samples in Japan were collected with the permission of the municipality managing the sampling areas 
and Hokkaido University. Fecal samples in Mongolia were collected with the permission of the State Central 
Veterinary Laboratory, Mongolia. These samples were transferred to Japan under the permissions of the Animal 
Quarantine Service, Japan (27douken560-2, 28douken563-6, 29douken 683–2). Swab samples in Vietnam were 
collected with the permission of the Department of Animal Health, Vietnam. These samples were transferred 
to Japan under the permissions of the Animal Quarantine Service, Japan (27douken560-3, 28douken563-1, 
28douken563-4, 28douken563-5, 29douken683-3, 29douken683-4).

Data reported in the Influenza Research Database (IRD) were from samples obtained and submitted under 
NIH-funded avian influenza surveillance collection efforts (CEIRS) and are publicly available at: www.fludb 
.org . This work was supported in part by a National Institute of Allergy and Infectious Disease Centers of Excel-
lence in Influenza Research and Surveillance (CEIRS) award, Contract HHSN272201400008C (to Eric Bortz).

For Alaska USDA data, wild bird samples primarily came from hunter-killed waterfowl, with voluntary 
participation from hunters. These sampling activities were covered under US Fish and Wildlife Service Federal 
Permit MB124992-0.

Results
Data compilation. We were able to present the best-available data set on low-path AI—presence/absence—
for the Pacific Rim (Fig. 3). We documented this dataset with ISO-compliant metadata (Appendix 1) in an Open 
Access data sharing framework for the global audience. In addition, we were able to obtain Influenza Research 
Database (IRD) Asia data as well as the U.S. Department of Agriculture (USDA) Alaska database on Avian Influ-
enza. To our knowledge, there is no better data set for this topic available thus far.

General AI query and analysis. This is one of the first concerted analyses of low-path AI ever undertaken, 
also including standardized and shared AI lab work. While the species and study area are widely undersampled, 
our findings show app. 110 strains of low-path AI, distributed over many bird species. However, of the c. 183 
hosts sampled for AI, only 32 carried identifiable low-path AI (details shown in Appendix). Of those species, 
only a few co-occur, and likely migrate, between the shores of the Pacific Rim in the study area (6). Almost all 

Figure 3.  Map of low-path AI data, presence and absence data distribution.

http://www.fludb.org
http://www.fludb.org


6

Vol:.(1234567890)

Scientific Reports |        (2020) 10:16817  | https://doi.org/10.1038/s41598-020-73664-2

www.nature.com/scientificreports/

of those species, and especially those with a high prevalence, are from ducks, gulls, and a few shorebirds. The 
highest prevalence was found with ‘ducks’, chicken, and human-associated species like Muscovy duck, whistling 
swan, mallards and gulls, for instance. As one of the most abundant species in the study area (14,  see9,11 for an 
example) passerines were consequently widely undersampled but thus far reported almost no low-path AI. Our 
study overall did not differentiate between types of AI sampling but most relied on feces. We therefore cover 
minimum estimates in space and time, for hosts and for low path AI still.

Prevalence and keystone species. Table 2 shows species with the highest sample sizes and their outcome 
of low-AI strains (cut-off > 0.2%). The highest prevalences are found for duck and chicken samples (species of 
tufted duck and whistling swan just carry very low sample sizes and might be considered positive outliers lack-
ing power). Muscovy duck and mallard, as well as environmental samples, should also be considered. All other 
samples, wild birds, carry relatively low AI subsamples but do occur in the wider reservoir.

The Appendix shows the most dominant low-path AI strains and with their associated host diversity and 
major contributing hosts. Low-path AI co-occurs in several species and might be found as a community. A low 
path AI strain is found in average in over 7 different host species (for the Top 20 hosts). Figure 4 summarizes the 
relationship between prevalence and contribution rank for the major low-path AI strains. It finds that chicken, 
ducks and human-associated waterfowl species like Muscovy duck and mallards, as well as Larid gulls seem to 
play a major ecological role for low-path AI. Figure 5 shows how those species contribute to the model and how 
location and human factors interact towards low path AI prediction.

Model‑details and predictions. Our model predictions are the first type of inference for low-path AI and 
its compiled best-available public data set. We present a model prediction surface in Fig. 6, showing a hotspot in 
Asia, namely China, coastal Asia, central Siberia and a more mixed-pixel and declining gradient further north. 
A connecting corridor of low-path AI would be possible between Asia with Alaska across the dateline but is not 
very dominant.

For predicted coldspots (= absence) they seem to occur in the high arctic and in areas that are less populated 
or lack urbanization as well as the are not within the immediate coastal zones.

Our model is based on 19 predictors, of which app. 5 are among the most important ones acting in concert 
(Table 3). We wish to see it interpreted as a multivariate set of predictors in which low-path AI can be predicted 
well (ROC of over 90%). This set of relevant predictors for low-path AI has a co-occurring scheme. It consist 
of anthropogenic factors in the tropical Asian landscape such as roads and road proximity, poultry density and 
landcover types that have a human population and development on a global scale. It shows a direct affiliation 
with relevant centers of the world’s economic growth.

The host species makes for the major driver of low-path AI in the Pacific Rim. But arguably, the host species 
occurrence is eventually determined by the ecological niche, which consists, in a large part, of predictors we 
used in this model. Those show us a multivariate set of predictors that determine the response of low-path AI 
(details shown Fig. 5). Beyond the identified Koeppen Geiger classes—namely categories in Western China, the 

Table 2.  Prevalences of host species for low-path AI strains from the compiled AI dataset. * Duck undefined 
usually refers to Mallard or Muscovy Duck.

Host species AI Samples Presences of low-path AI Proportion of sampled species in %

Tufted duck 1 1 100.00

Whistling swan 8 8 100.00

Chicken 488 450 92.21

Duck * 1,120 1015 90.63

Emperor Goose 79 18 22.78

Muscovy duck 103 18 17.48

Environment 259 25 9.65

Mallard 4,338 159 3.67

Green-winged teal 1,448 47 3.25

Pintail 5,166 136 2.63

Ring-necked duck 85 2 2.35

Shoveler 1,514 34 2.25

Gadwall 74 1 1.35

Cackling goose 122 1 0.82

Glaucous-winged gull 3,490 26 0.74

Greater white-fronted goose 527 2 0.38

Sandpiper 644 2 0.31

American Wigeon 1,616 4 0.25

Unidentified Larus gull 422 1 0.24
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triangle between Mongolia- Russia-China, Southern Japan and Vietnam—individual climate predictors like 
monthly temperature and precipitation play less of a role for low-path AI and human factors dominate overall.

Model assessment. Based on confronting low-path AI predictions for an assessment with alternative data 
we find a good match with the IRD data for Asia (Fig. 7a). While the second testing data from USDA is not geo-
referenced with coordinates but uses counties, and just sampled for AI presence, H5 and H7, it cannot fully be 
compared. However, while with less evidence, it also shows a general match with our data (Fig. 7b) indicating 
that LP AI could relate to HP AI even.

Discussion
One of the fundamental unknowns in the field of influenza biology is a panoramic understanding of the role 
wild birds play in the global maintenance and spread of influenza A viruses. AI may be perceived as an industrial 
disease with commercial chicken and ducks playing the major roles and ecological spill-over effects into the wild. 
A well-known fact is that wild aquatic birds are considered a reservoir host for all low pathogenic avian influenza 
A viruses. Thus, genes of low path viruses may contribute to the emergence of pandemic viruses responsible 
for morbidity and mortality in both poultry and humans worldwide. Therefore presenting reservoir locations is 
important information to identify and treat a potential source of zoonotic AIV (9,23).

Here we were able to compile and document the best-available (‘Big Data’) data set for LPAI in the Pacific 
Rim study area, available as a publically-available GIS layer with ISO-compliant metadata. Further, we were 
able to create the best-possible publically available prediction of low-path AI for the Pacific Rim using machine 
learning and open access data. In addition, we were able to obtain and use two alternative low-path AI data sets 
to confront the model predictions for validity: U.S. IRD Asia and USDA Alaska. It is supposed to be the first 
ever ‘Big Data’ synthesis analysis across years, nations and data sets for AI done anywhere (compare  with6  and9). 
This work is based on the coordinating eASIA project for the Pacific Rim allowing for international views of AI 
and public health perspectives.

Arguably the data mining workflow and international large-scale multi-lab methodology is the first of its kind 
allowing for Ecological Niche analysis and inference (Fig. 2;  see9 for generic AI). Our field sampling work is still 
incomplete on a landscape-scale though and lacks a research design assessment for effectiveness, which is to be 
improved in subsequent efforts. However, here we set a first and digital baseline to start from, all in Open Access 
formats to work from further, e.g. filling sampling gaps, pursuing specific research and management questions, 
and improving and testing model predictions. Further, quality control of AI data is to improved, standardized 
and assessed also, specifically detection rates in the field and with certified lab protocols.

Figure 4.  Figure showing relationship between prevalence and importance rank (contribution) to the top 10 
low-path AI strains (data shown in Table 2).
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Although it is one of the largest AI studies ever done, our data are still widely undersampling the species in 
the vast  landscapes10,15. We therefore report underestimates. Looking at co-occurrences, we found that app. 32 
host species are involved—including the environment- for low-path AI. We also find that low-path AI are found 

Figure 5.  Partial dependence plots of the top 3 predictors a) host species for data mining, and b) showing 
a 3-dimensional partial dependence plot for predictions (Koeppen Geiger classification and poultry density 
index).
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Figure 6.  a) Model-predicted surface of low-path AI, b) Alaska zoom-in, c) Asia zoom-in. This map shows 
a heatmap where predicted presence and absence is shown as a relative index of occurrence (RIO with 
red = presence, green = absence, and gradient colors in-between).

Table 3.  Importance ranking of predictors for low-path AI model based on Treenet algorithm (SPM). * An 
attribute that is associated with AI lab data; it was used for the data mining (not landscape prediction surface 
as such information is not really available on a landscape scale; see  also10,15)

Predictor rank of importance Name of predictor Percent importance ranking

1 Host species* 100

2 Koeppen geiger classification 24

3 Proximity to known poultry farms 13

4 Mean precipitation June 12

5 Proximity to roads 12

6 GLC2000 landcover 11

7 Slope in degrees 11

8 Proximity to coast 10

9 Proximity to pig farms 9

10 Mean precipitation September 8

11 Mean temperature December 8

12 Altitude 7

13 Nationalpark 7

14 Mean temperature March 6

15 Mean precipitation March 6

16 Mean temperature September 5

17 Mean temperature June 5

18 Mean precipitation December 5

19 Located in cyclone area 3
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in many hosts, e.g. over 7 species on average for the top 20 low-path AI strains. From the data at hand, one can 
easily see that human-dominated species such as chicken and duck -including mallards and Muscovy ducks—play 
a central role for low-path AI. However, the wild species component remains widely undersampled but matters 
with wider ecological reality to focus on.

Our prediction maps are able to show hotspots in Asia, namely China, coastal Asia, parts of Central Siberia, 
as well as a connecting ‘flyways’, with a lower proportion in higher latitudes. Similar to findings in Asia, in Alaska, 
urban centers, roads and river plains seem to host much of the low-path AI in the landscape. Our hotspots are 
based on the widely proven Ecological Niche analysis  concept9,12 and the synthesis shows a co-occurrence with 
areas of globally recognized high human populations, development and subsequent economic growth. There is 
a concern then that AI can spread and transfer from these regions further, affecting livelihoods, wilderness and 
mankind worldwide (9,24,25). That’s where a focus on more ecological perspectives, connectivity and spill-over 
effects (‘telecoupling’26) provides more progress.

The assessment data indicate that our model predictions are pretty robust. This must not come as a big surprise 
when knowing the reliability of machine learning modeling methods in space and time (see for  instance9,13,  and12 
for generic applications and performance).

This study sets a baseline, and it now can be improved further, namely making good use of digital products 
compiled and created. Further we suggest a focus on holistic/ecological approaches, an increased representative 
sampling of all species and landscapes (hotspots, coldspots, gradients in space and time), coordinating sampling 
and public data sharing with other projects and hotspots elsewhere, e.g. in the European Union and with the 
World Health Organization. Also more assessments should be carried out, and data accuracy and sharing are to 
be improved, e.g. for Alaska, geo-referencing using quantitative coordinates with 6 decimals and providing AI 
subtype information all done open access with ISO-compliant metadata.

Here we were able to present a first Big Data low-path AI perspective and to highlight hotspots, coldspots 
and reservoirs for improved handling, studying, and management of AI in the Pacific Rim and globally. We 
think this work allows for a template to gain better inference and for better management of low-path AI and AI 
overall using modern methods.

Received: 12 June 2020; Accepted: 21 September 2020
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