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Abstract

Background: Analysis of heterogeneous populations such as viral quasispecies is one of the most challenging
bioinformatics problems. Although machine learning models are becoming to be widely employed for analysis of
sequence data from such populations, their straightforward application is impeded by multiple challenges
associated with technological limitations and biases, difficulty of selection of relevant features and need to compare
genomic datasets of different sizes and structures.

Results: We propose a novel preprocessing approach to transform irregular genomic data into normalized image
data. Such representation allows to restate the problems of classification and comparison of heterogeneous
populations as image classification problems which can be solved using variety of available machine learning tools.
We then apply the proposed approach to two important problems in molecular epidemiology: inference of viral
infection stage and detection of viral transmission clusters using next-generation sequencing data. The infection
staging method has been applied to HCV HVR1 samples collected from 108 recently and 257 chronically infected
individuals. The SVM-based image classification approach achieved more than 95% accuracy for both recently and
chronically HCV-infected individuals. Clustering has been performed on the data collected from 33
epidemiologically curated outbreaks, yielding more than 97% accuracy.

Conclusions: Sequence image normalization method allows for a robust conversion of genomic data into
numerical data and overcomes several issues associated with employing machine learning methods to viral
populations. Image data also help in the visualization of genomic data. Experimental results demonstrate that the
proposed method can be successfully applied to different problems in molecular epidemiology and surveillance of
viral diseases. Simple binary classifiers and clustering techniques applied to the image data are equally or more
accurate than other models.

Keywords: Next-generation sequencing data, Image normalization, Staging HCV infections, Outbreaks
investigations, Clustering
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Background
Currently, viral epidemics continue to be critical public
health issues. Many emerging and long-standing epi-
demics are associated with small (~ 10 kilobases long)
positive-sense single stranded RNA virus, such Human
Immunodeficiency Virus (HIV), Hepatitis C virus
(HCV), Zika virus (ZIKV) and dengue virus (DENV).
The paramount feature of these viruses is their ex-
tremely high mutation rate caused by error-prone repli-
cation, which can be as high as 10-4 mutations per site
per replication cycle [1], thus resulting in generation of
all possible single point mutations in each infected indi-
vidual every day. As a result, RNA viruses exist in in-
fected hosts as highly heterogeneous populations of
genomic variants usually referred to as viral quasispecies.
Intra-host and inter-host evolution of viral quasispecies
is a complex phenomenon de defined by numerous fac-
tors such as virulence, infectivity, drug resistance, im-
mune escape, transmission rates, behavorial patterns and
otherphenotypic and epidemiological numerous factors
such as virulence, infectivity, drug resistance, immune
escape, transmission rates, behavorial patterns and other
phenotypic and epidemiological features, which plays
crucial role in disease progression and outcome of infec-
tion [2–6]. Challenges associated with understanding
complex quasispecies evolution attracted many re-
searchers in different domains, including virology, epi-
demiology, population genetics and systems biology.
Analysis of heterogeneous viral populations is one of

the most challenging bioinformatics tasks owing both to
the complexity of the underlying algorithmic problems
and features and sheer amount of data [7, 8]. These
challenges became especially complicated in the recent
decade with the advent of high-throughput sequencing
(HTS), which has now become a major tool for viral re-
search, allowing to sample viral populations at unprece-
dented depth [9–15]. Modern computational virology
continues mostly to rely on classical approaches, which
include sequence analysis, phylogenetics/phylodynamics
and structural bioinformatics [8, 16]. In the recent years,
these approaches started to be complemented with the
network analysis [17–19].
Significant number of computational molecular epi-

demiology problems could be defined using phyloge-
netics or clustering-based objective. These problems
include inference of transmission clusters, detection of
co-infections, therapy outcome prediction, infection sta-
ging and other research and medical questions. Such
problems could be tackled by powerful methods of ma-
chine learning and deep learning. It should be expected
that in the near future, in accordance with the general
trend in AI and Computer Science research, machine
learning and deep learning techniques will be utilized in
viral research on a much wider scale.

In order to employ machine learning for viral studies,
quasispecies populations should be transformed into fea-
ture vectors from a multidimensional euclidean space.
Several encoding schemes have been used in the litera-
ture for transforming biomedical data into numerical
data for machine learning [20]. However, the existing
methods face significant challenges when applied to viral
genomic data. These challenges are associated with
extremely high heterogeneity of intra-host viral popula-
tions, sequencing errors and sampling biases, robustness
to noise and difficulty of selection of relevant sets of
features.

Contribution
In this work, we propose a novel method converting
genomic data into images, which are then used for clas-
sification and clustering. The new approach allows to
utilize a well-developed machine learning methodology
from the domain of image processing in genomic
analysis. The proposed scheme provides the data struc-
ture for the representation of intra-host population
structure which is compact, easily adjustable, robust to
technological noise and sampling bias, preserve struc-
tural properties of populations and can be used for a
variety of classification problems, where machine learn-
ing is applicable.
We validated our approach by applying image process-

ing techniques to two important molecular epidemiology
problems. The first problem is the HCV infection sta-
ging, i.e. distinguishing between recent and chronic in-
fections using viral sequences sampled by next-
generation sequencing (NGS). It is known that in 80% of
untreated cases HCV infection turns into a chronic in-
fection leading to severe health problems such as liver
cirrhosis and hepatocellular carcinoma (a form of liver
cancer). HCV infection often does not manifest any clin-
ical symptoms in its early stages, which impedes the
timely diagnosis of disease. Furthermore, currently there
are no diagnostic assays to determine the stage of HCV
infection. Therefore, distinguishing recently infected pa-
tients from chronically infected patients using non-
invasive methods such as analysis of genomic data would
be highly important both for personalized therapeutic
purposes and for epidemiological surveillance; e.g., for
detection of incident HCV cases.
The second problem is the detection of outbreaks

using NGS data. In molecular epidemiology, it is com-
mon to utilize the observation that viral populations
from the same outbreak are genetically related. Thus,
measures of genetic relatedness could be used as a pre-
dictor for epidemiological relatedness [21–23]. In other
words, this problem could be considered as the problem
of clustering of intra-host viral populations. Until re-
cently, most available tools for outbreak investigations
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analyzed only a single representative sequence per popu-
lation (usually consensus sequence) [21, 23]. Although
several recently published tools allow to take into ac-
count entire intra-host populations [18, 19, 22, 24], the
problem of comparison and clustering of viral popula-
tions still remains challenging [25].
We demonstrate that classification and clustering

techniques based on normalized image representations
of intra-host viral populations allow to solve these two
problems with high accuracy.

Methods
Data collection
Intra-host HCV populations sampled by sequencing of a
highly heterogeneous genomic region (HVR1) are ana-
lyzed. The analyzed region of length 264 bp, which in-
cludes HVR1, has been sequenced using the GS FLX
System and the GS FLX Titanium Sequencing Kit (454
Life Sciences, Roche, Branford, CT). Obtained sequences
were processed using the error correction and haplotyp-
ing algorithm KEC [26], and the obtained haplotypes
were aligned using Muscle [27]. The data [16, 28] used
for classification of intra-host HCV populations as re-
cent and chronic consists of 365 NGS samples, including
108 datasets corresponding to recently infected hosts
and 257 datasets belonging to chronically infected hosts.
Recent samples either belong to patients with the known
times since seroconversion, or to the collection of HCV
outbreaks, where epidemiological investigations revealed
that secondary cases were infected within few months
from the dates of sample collection, thus allowing to
classify them as recently infected. Chronic samples are
obtained from several molecular surveillance studies. For

clustering and identication of outbreaks, we use the
benchmark dataset [18, 19, 22] that consists of HCV
intra-host populations collected from 335 infected indi-
viduals in 2008-2013. Of these, 142 HCV samples belong
to epidemiologically curated outbreaks involving from 2
to 19 patients, while the remaining datasets are epidemi-
ologically isolated cases.

Sequence image normalization
We transform sequence data into an image by the pre-
processing method further referred to as Sequence
Image Normalization. We assume that sequences are
aligned and ordered by their counts, with sequences of
the same counts being sorted lexicographically. Next,
each symbol l 2 f0A0;0 C0;0 T0;0 G0;0 0g is associated with
a particular color thus transforming the sequence align-
ment into an image. Finally, the images corresponding
to different infected hosts are normalized by transform-
ing them into fixed size images. The colors to represent
nucleotides are selected from the set of colors of higher
variation in order to simplify identification of
discriminative size images. The colors to represent
nucleotides are selected from the set of colors of higher
variation in order to simplify identification of discrim-
inative features characterizing particular intra-host pop-
ulations. Fig. 1 demonstrates an example of sequence
image normalization output. Normalized images thus
allow to captures entire viral population structure using
a single data representation independent of the number
of sequences and with minimum loss of existing data or
introduction of artificial data.
Raw pixel data of generated images are used as

features to train machine learning models for the

Fig. 1 Generation of fixed size image
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consecutive analysis, as demonstrated in Fig. 2. The
number of features depends on the image resolution:
each image of the resolution x× y corresponds to x× y ×
3 feature vector, with each pixel having 3 RGB compo-
nents. In our experiments, sequence datasets have been
analyzed for different resolutions ranging from 50 × 50
to 550 × 550 with the step size of 50 in each dimension.
Results were generated using resolution 480 × 480 at
which both models performed most accurately.

Classification of recent and chronic HCV infections
Identification of HCV infection stages is considered as a
binary classification problem. Fig. 3 shows typical nor-
malized images of HCV populations from recent and
chronic infections. Visual inspection of images allows for
identification of typical patterns associated with both
classes - images of recent infection have pronounced di-
agonal lines while chronic images are choppy.

Images corresponding to intra-host viral populations
have been labeled based on the stage of infection as re-
cent or chronic and used to train the following machine
learning classification models: Stochastic Gradient Des-
cent (SGD), Decision Tree, Gaussian Naive Bayes
(Gaussian NB), Linear Support Vector Machine (Linear
SVM), Random Forest and k-Nearest Neighbours
(kNN). We used models’ implementations from python
scikit-learn library [29]. Different SVM kernels have been
explored of which SVM with linear kernel produced the
best results. In linear SVM model, there is a regularization
parameter c which helps in generalizing the model by con-
trolling testing and training errors. In this model, grid
search is performed on c values in the range [-2, 20]. For
kNN models, we selected the best model among the
models with euclidean and manhattan metrics and with k
from the range [3, 20]. For random forest, the best model
has been chosen by performing grid search on the number
of trees in the range [10, 100].

Fig. 2 Pipeline of sequence image normalization of a fasta file

Fig. 3 Examples of normalized images of intra-host populations from (a) recent HCV infection and (b) chronic HCV infection
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Trained classifiers have been validated based on their
accuracy, area under the curve (AUC), precision, and re-
call. Accuracy (Acc) is defined as the proportion of test
cases correctly classified, as either recent or chronic.
Precision (Prec) measures the fraction of the correctly
classified populations within each predicted infection
class, while recall (Rec) measures the fraction of the true
recent or chronic populations that are correctly pre-
dicted. Validation has been performed via stratified 10-
fold cross-validation. Specifically, in addition to the
standard 10-fold cross-validation, we employ "leave-one-
outbreak-out" cross-validation and random undersam-
pling methods to balance the datasets. In our current
data, some of the samples come from the same HCV
outbreak. Such samples are close to each other by their
nucleotide composition, thus their presence may lead to
over-fitting of any particular method. In "leave-one-out-
break-out" cross-validation, data from each of these out-
breaks was used in the validation set, while other
samples are used in the training sets. Random under-
sampling has been performed to balance the difference
in sizes of datasets of recent and chronic hosts. In this
method, chronic dataset size is reduced by random sub-
sampling to match the recent dataset size.

Clustering of intra-host viral populations from outbreaks
We cluster images representing intra-host viral popula-
tions into transmission clusters using standard clustering
algorithms {agglomerative hierarchical clustering, k-
means clustering and mini-batch k-means clustering. As
before, we used models’ implementations from python
scikit-learn library [29]. Several distance measures have
been employed, including euclidean, manhattan and co-
sine metrics. Hierarchical clustering has been executed
using complete, average and ward linkage approaches.
Normalized Mutual Information (NMI) [30], homo-

geneity [31] and completeness [31] scores as used as
metrics to analyze the clustering performance. These
measures evaluate the assigned cluster labels after

clustering compared to the actual cluster class label of
each intra-host viral population. Homogeneity score
measures if the all members of a cluster actually belong
to one cluster class label, while the completeness scores
measure if all the members of an actual cluster class
label are grouped into the same cluster. NMI measures
the mutual information shared between the individuals
in the clusters. All these measures range from 0 to 1 and
the values closer to 1 refer to better clustering efficiency.
To evaluate the effectiveness of the normalization
method in detecting relatedness between any pair of
samples, we compute AUROC (Area under ROC curve)
is computed (as done in [18]). Viral populations taken
from the same outbreak are considered as genetically re-
lated, otherwise as unrelated. There are 55,945 pairs of
samples, and 479 of them are related. After computing
the distances between each pair of samples, all the pairs
crossing a threshold value are considered as related. To
compute AUROC curve, false-postive rate (FPR) and
true-postive rate (TPR) are measured by modifying the
threshold starting from the best threshold value where
there are no false positives.

Results
Classification of infection stages
Stratified 10-fold cross-validation has been initially
performed to analyze the performance of several classifi-
cation methods trained using the normalized image data.
Fig. 4 shows accuracy and AUC of the best models for
each of the methods using box plots, with the average
metrics being indicated by red line. Linear SVM demon-
strated superior performance compared to all other
models, with an average accuracy of 97.545% and low
accuracy variance. Other models with the exception of
Gaussian NB have accuracy greater than 85%, thus ex-
ceeding accuracy of existing methods, which are primar-
ily based on feature extraction methods (see
Comparison with previous methods subsection). Accur-
acy metric alone cannot define performance of the

Fig. 4 Accuracy and AUC (Area Under the Curve) for several simple classification methods after training based on the normalized image data

Basodi et al. BMC Genomics 2020, 21(Suppl 6):405 Page 5 of 10



model as it needs to achieve higher precision and recall
metrics for each infection type as well. Fig. 5a-d demon-
strate the precision and recall metrics for chronic and
recent samples separately. As before, linear SVM
achieves the best performance over all other models with
an average precision and recall values of 98.11 and
98.45% for chronic populations and 96.52 and 95.36%
for recent populations, respectively. This model also has
low variance across the values obtained from all the
folds. Noticeably, other models with the exception of
Gaussian NB also achieve more than 80% values for
these metrics.
Linear SVM model has been analyzed further with

leave-one-outbreak-out and random undersampling val-
idation combined with 10-fold cross-validation. Table 1
shows the results of these methods compared to the
standard 10-fold cross-validation on the whole dataset.

The classification accuracy remains stable under the
additional sampling methods.

Detection of transmission clusters
The results of k-means, mini-batch k-means and hier-
archical clustering models are shown in Table 2. In our
experiments, agglomerative hierarchical clustering with
ward linkage and euclidean distance between images
demonstrated the best performance. Furthermore, we
evaluated the accuracy of detection of epidemiologically
related pairs. Two intra-host viral populations are con-
sidered to be related, if the distance between corre-
sponding images is below a specified. threshold. ROC
curves for the accuracy of detection of epidemiologically
related pairs for different distance measures and thresh-
olds are shown in Fig. 6. All distance measures produced

Fig. 5 Precision and Recall comparisons of several simple classification methods after training based on the image data generated using
sequence image preprocessing method

Table 1 Performance metrics of Linear SVM classi er assessed by standard 10-fold cross validation, leave-one-outbreak-out validation
and random undersampling methods

Sampling Methods Accuracy Precision-Chronic Precision-Recent Recall-Chronic Recall-Recent AUC

Standard 10-fold cross-validation 97.545% 98.105% 96.515% 98.446% 95.364% 96.905%

Leave-one-outbreak-out 96.075% 97.004% 91.0% 98.446% 83.5% 90.973%

Random undersampling 95.164% 96.328% 94.661% 94.155% 96.173% 95.164%
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consistent results, with AUC exceeding 0.99 for all of
them.

Effect of image resolution
All experimental results discussed above have been ob-
tained using the default image resolution 480 × 480. We
analyzed impact of image resolution on the classification
and clustering performance. Resolution values varied
from 50 × 50 to 550 × 550 with step size of 50. Fig. 7a
shows the performance metrics of stratified. 10-fold
cross-validation using LinearSVM model for detecting
stage of HCV infections based on different image resolu-
tions. Highest accuracy is achieved at the resolution
450 × 450, although the accuracy mostly saturates ap-
proximately after the resolution 300 × 300. Similar per-
formance has been observed for agglomerative
hierarchical clustering (Fig. 7b).

Comparison with previous methods
A previously published model [32] classifies stages of
HCV infection using one of the following 3 parameters:
variant frequencies entropy, average position-wise nu-
cleotide entropy and the average distance from viral var-
iants to the most frequent variant of the population. In
our data, AUC for these parameters was equal to ~81,
~66 and ~78%, respectively, while the proposed classifier
based on image normalization yielded ~96.9% AUC.
We also compared clustering sensitivity and AUROC (of

the inference of genetic relatedness between a pair of HCV
samples) for our method and consensus-based approach

(see e.g. [9, 33]) for the two population based methods
VOICE and ReD proposed in [18]. The consensus-based
method compares intra-host viral population using one
representative sequence per population, which is most
often the consensus sequence, while VOICE and ReD
methods analyze whole quasispecies populations. Consen-
sus algorithm achieves clustering sensitivity of 93.94% and
AUROC (genetic relatedness) of 98.7%. ReD method
achieves clustering sensitivity of 96.3% and VOICE method
achieves clustering sensitivity of 98.2% and AUROC (gen-
etic re-latedness) of ~99%. Image clustering method
achieves sensitivity of 98.181% and AUROC of 99.2%
which are higher values than consensus and ReD methods
and has similar performance to the VOICE algorithm.

Discussion
The sequence-image normalization method described
here provides a way to transform genomic data into
image data which can be directly employed by machine
learning methods. The proposed preprocessing method
was specifically designed to addresses multiple chal-
lenges that currently impede applications of machine
learning and deep learning methods to viral studies.
These challenges could be thematically classified as
follows:

Challenges associated with technological limitations
High-throughput sequencing technologies are prone to
errors and biases, which may significantly affect viral
data. Indeed, frequencies of minor viral variants are
often comparable with the level of sequencing noise;
however, such variants should not be simply discarded
based on some frequency threshold, since often they are
the ones responsible for transmission, immune escape or
therapy failure [3, 5, 6, 34–36]. Presence of sequencing
errors introduces noise to data and produces outlier viral
variants, which negatively affect the quality and accuracy
of machine learning classifiers.
Another important problem is sampling and sequencing

bias resulting in significant irregularities in the number
and length of viral sequences from different infected indi-
viduals. If classifiers capture these artificial differences as
significant associations, it may result in overfitting and de-
cline of accuracy. Thus, application of machine learning to
heterogeneous viral population data should be preceded
by a preprocessing step to eliminate these irregularities via
normalization procedure. However, selection of an appro-
priate normalization approach is challenging. For instance,
if we use text classification techniques for preprocessing,
difference in the number of sequences among different
files needs to be controlled either by truncation or pad-
ding. This preprocessing, however, causes data loss (in
case of truncation) or introduces irrelevant data (in case

Table 2 Performance metrics of various clustering methods

Clustering Method NMI homogeneity completeness

k-means 0.986 0.994 0.978

Mini-batch k-means 0.985 0.992 0.978

Hierarchical 0.987 0.994 0.979

Fig. 6 Performance of AUROC in detection of epidemiologically
related pairs of populations with different distance metrices
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of padding). An optimal preprocessing method should not
introduce such issues.

Challenges associated with feature selection and feature
extraction
Before applying machine learning methods to classifica-
tion of heterogeneous viral populations, genomic data
should be mapped into the euclidian space Rn. It is usu-
ally achieved by identifying numerical features that are
relevant to the problem under consideration. They can
include various diversity measures [32], popula-tion gen-
etic parameters [37], physico-chemical properties [16]
and other parameters specifically tailored to particular
problems. These features are generally identified in con-
sultation with domain experts. Selection of the most
relevant features is daunting and resource-consuming. A
role of feature selection in determining classification
performance is paramount. Selection of a limited num-
ber of features from certain domains inevitably results in
loss of information, while increase of feature space di-
mensionality increases risk of overfitting and compro-
mises the algorithm’s scalability.
An optimal feature selection method should be able to

capture the entire population structure using a relatively
simple and easily contractible data representation. Fur-
thermore, it should use a standard universal data format,
which has a fixed number of features and is applicable to
different problems. Since genomic data is essentially a
textual information, it is tempting to utilize well-
developed machinery from the text classification domain
[38, 39] for the purpose of construction of such represen-
tation. Viral populations could be mapped to a euclidian
spase using word2vec approaches [40], and classified using
various available deep learning models [38, 39]. However,
application of text processing approaches to viral research
could be impeded by several factors. Since they are based
on deep neural network models with large numbers of
hyperparameters, it requires large annotated datasets to
train these models. However, in molecular epidemiology,

the amount of available training data is usually limited in
comparison with the text processing domain. The datasets
of several hundred intra-host viral populations analyzed in
this paper are typical in this context. Although, word2vec
or document embedding methods can be directly
employed, it is challenging to train a model to get a higher
classi classification performance. Furthermore, since viral
haplotypes are unique, the trained model could overfit the
data.

Challenges associated with data comparison
Clustering of intra-host viral populations requires an
inter-population distance measure, which takes into ac-
count complex population structures. It has been shown
that among simple alignment-based population distance
measures, the minimal distance between population vari-
ants allows to achieve the highest clustering accuracy
[41]. However, this measure is sensitive to noise and
presence of outliers, and does not take into account the
whole population structure. Recently, several simulation-
based and network-based distance measures have been
proposed [18, 19], which overcome above-mentioned limi-
tations at the cost of lesser scalability. Thus, the universal,
accurate and efficiently computable inter-population dis-
tance measure, which takes into account complex popula-
tion structures still has to be developed.
Our proposed preprocessing method converts the viral

population genomic data sampled by NGS into a scaled
image. Irregularities in the data are thus handled by gen-
erating a fixed size image. The number of features in this
case remains same. Therefore, it can be directly used for
machine learning applications without any explicit fea-
ture selection methods. High accuracy of machine learn-
ing classification and clustering techniques based on
image representation applied to several molecular epi-
demiology tasks signifies validity of our approach. The
case of infection staging is particularly illustrative. Previ-
ous studies demonstrated that diversity of intra-host
viral populations often increases with progression of

Fig. 7 Performance metrics (Y-axis) of classification and clustering methods based on different image resolutions(X-axis)

Basodi et al. BMC Genomics 2020, 21(Suppl 6):405 Page 8 of 10



HCV infection [28, 32, 37]. In addition to immune es-
cape, which is usually responsible for the diversity in-
crease, complex adaptation mechanisms get engaged
during intra-host HCV evolution, such as antigenic co-
operation [6], which may result in increase of negative
selection and selection of viral variants with particular
properties, allowing HCV to survive in host environment
for prolonged periods of time [17, 42–45]. The major
features of such evolutionary processes include (but not
limited to) low DN/DS ratio, skewed distributions of
physico-chemical properties and presence of particular
sequence motifs [16, 17, 37]. These and other features
can be taken into account by inclusion of the features
based on various genomic and biochemical parameters
into machine learning classifiers. However, most of them
are already implicitly included into the image represen-
tations, and thus are taken into account when the
image-based classifiers are trained. It allowed us to
achieve a high classification accuracy. In future work, se-
quence image normalization machinery can be applied
to other challenging problems in viral genomics, such as
detection of co-infections and prediction of drug resist-
ance and therapy outcome.

Conclusions
Here, we propose a novel method for generation of a fixed
set of features representing heterogeneous viral popula-
tions, which is widely applicable for various classification
and clustering tasks addressed by machine learning. The
method converts sequence data into fixed-size images, thus
reducing several issues associated with comparison of viral
populations by machine learning methods. Simplicity of the
sequence image normalization method allows for a robust
conversion of genomic data into numerical data. Image
data also help in visualization of genomic data. Experimen-
tal results demonstrate that the proposed method can be
successfully applied to different problems in molecular epi-
demiology and surveillance of viral diseases. Simple binary
classifiers and clustering techniques applied to the image
data are equally or more accurate than other models.
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