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Background
Proteases are enzymes present in all species, from bacteria to vertebrates, and they 
account for approximately 2% of the genes in humans, second in number only to tran-
scription factors [1]. These enzymes are involved in almost all fundamental processes in 
the cell, catalysing the cleavage of peptide bonds both in proteins and oligomeric pep-
tides [2, 3]. Recognition and binding of a polypeptide substrate, which is cleaved at a 
specific peptide bond in the active site, occurs via pockets which accommodate specific 
amino acid side chains [3, 4]. The eight pockets, or subsites, are labelled S4-S1, S1ʹ-S4ʹ, 
with the corresponding peptide residues identified as P4-P1, P1ʹ-P4ʹ, the bond cleaved 
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being the peptide bond between P1 and P1ʹ. The proteases can be grouped into serine, 
cysteine, threonine (covalent catalysis), aspartic and metallo-endopeptidases (general 
acid–base catalysis) according to the main types of reactive groups in the active site. 
The serine proteases are the largest and the best-studied class of proteases [5, 6]. They 
contain the classic Asp-His-Ser catalytic triad, displaying a generally accepted cleavage 
mechanism for a large number of diverse amino acidic substrates.

For some protease families, cleavage information can be obtained experimentally 
using methods such as mass spectrometry, liquid chromatography, N-terminal sequenc-
ing, and others [7]. Cleavage data provides clues about the enzyme’s promiscuity and 
specificity, while curated information can identify the sequence recognition patterns of 
the binding sites for known proteases [8]. Public databases, such as MEROPS, are repos-
itories storing protease experimental data, including evidence of cleaved substrates, the 
biological context of their molecular reactions, ligands of pharmacological relevance and 
comparative genomics findings [9]. However, most of the knowledge is available only for 
a small set of well-studied families and subfamilies. This becomes a problem when stud-
ying under-represented protease classes participating in a biological process of interest 
for biomedical and industrial applications [10]. It would be valuable to predict peptide 
substrate motifs for any protease of a given sequence. Therefore, based on data for those 
proteases with identified cleavage patterns, computational prediction tools have been 
developed to identify potential substrates (as defined by a short peptide sequence) using 
as input any protease sequence [11].

Most of the available predictive methods rely on machine learning models trained 
with experimental cleavage data [12, 13], as well as bioinformatics pipelines able to 
quickly scan cleavage patterns in massive protein sequence databases [14–16]. However, 
these methods result in many false positives given the small set of proteases with rep-
resentative data [17]. Despite these limitations, the methods are actively implemented 
by the computational biology community using public web repositories and tools [18–
20]. To understand protease substrate specificity, researchers have focused on studying 
structural information available for multiple protease families [21, 22]. The serine and 
cysteine proteases are the most studied groups due to their roles as molecular machines 
involved in immune response, protein digestion, and signalling pathways, among other 
biological processes [23, 24]. Researchers have implemented structural studies to charac-
terize small molecule inhibitors and drug-like entities such as modified peptide ligands, 
able to modulate these enzymes’ activity [25]. In the case of peptidomimetics, these have 
been designed to confer stability to peptide-based ligands and avoid cleavage of the mol-
ecule by the enzyme itself [26]. Because of this, many of the protease-peptide structural 
complexes that are available involve modified substrates and other types of ligands used 
for drug discovery purposes.

Hence, using structural data to identify drug-like molecules that might interact 
with given proteases still requires additional information [27, 28]. Researchers can 
derive models of protease-peptide complexes to analyse the binding spectrum [29, 
30]. One approach is to analyse protease-peptide structures to ascertain amino acid 
preferences at different positions of a peptide substrate sequence [31]. These com-
putational analyses usually employ experimental catalytic information stored in 
repositories such as M-CSA [32], bringing a clearer perspective of the structural role 
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of the catalytic residues, and other pocket residues, during binding. A key factor is 
that the substrates are intrinsically flexible and can therefore change their conforma-
tion during binding, affecting the pose and the probability of cleavage [33]. To model 
this requires using simulations to help understand the protease/substrate’s dynamic 
behaviour.

The dynamics of molecular complexes have been studied using multiple approaches, 
including normal and enhanced molecular dynamics simulations [34, 35], as well as 
more computationally efficient alternatives such as Metropolis Monte Carlo, to simulate 
the dynamic behaviour of whole protein structures [36]. One example is the Backrub 
method of the Rosetta program, which uses restraints obtained from crystal structures 
available in the Protein Data Bank (PDB) [37]. The method allows the movement of cer-
tain bonds and angles after following an energy penalization criterion [38]. Such meth-
ods have been extensively used to study the effect of single point mutations for different 
protein systems [39], including proteases, and also to perform iterative mutation cycles 
on amino acids of peptide substrates to study the tolerance of these sequences to modifi-
cation [40]. Such approaches have been used to predict the frequency and probability of 
finding amino acids at different positions of the peptide ligands, complementing experi-
mental and sequence-based approaches to studying protease specificity [41].

To facilitate the structural and dynamical study of proteases bound to peptide sub-
strates, it is crucial to have a set of annotated and curated structures, as well as proto-
cols to model any peptide of interest through available templates. One problem is that 
it is difficult to obtain structures where the bound peptide spans the full length of the 
binding site, given the protease’s natural impulse to cleave it. Hence a variety of means 
are used to prevent cleavage happening during co-crystallization, including use of non-
natural amino acids or non-peptide residues. Nevertheless, it is common to find in the 
structural data bound ligands that only span the S4-S1 sites, with sites S1ʹ-S4ʹ empty—
meaning there is a paucity of templates for helping model the P1ʹ-P4ʹ part of any peptide 
of interest. Here, we have annotated a set of protease crystal structures bound to pep-
tide-like ligands to use as inputs to the structural analysis of their binding recognition. 
We have created a pipeline to model peptide substrates bound to protease structures 
using as templates co-crystallized peptide-like ligands. Any non-natural amino acids 
in the bound peptide are computationally replaced by natural amino acids occurring in 
known substrates, with any missing regions being reconstructed whenever possible. The 
fully annotated proteases, as well as the modelling/sampling code protocols, are pro-
vided for reproducibility purposes, and for running similar analyses with other proteases 
for which structures are available.

As an application of the method, we ran our pipeline on a set of protease structures, 
generating models of bound substrates, to identify any structural observables that might 
be a proxy for the reported experimental entropies. In each case, the modelled ligand 
was replaced by a family of potential peptide ligands, generated randomly. A simula-
tion calculated binding energies and recorded various structural observables throughout 
the simulation. Finally, we compared the computational outputs with the experimental 
cleavage data (as defined by the specificity matrix) to explore which observables exhibit 
a similar trend. These could be used for further studies focused on predicting protease 
specificity profiles.
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The main goal of this work is to provide an open and automatic protocol to model 
peptide substrates bound to different types of well-annotated proteases, facilitating the 
analysis of structural interaction observables.

Results
Annotation and modelling results

Based on the criteria used to annotate the proteins, we obtained a list of enzyme struc-
tures in complex to peptide-like ligands. The dataset was downloaded from the PDB and 
included 2798 unique structures. After annotating the dataset with additional informa-
tion from other databases, 2581 entries were retained. From these, 758 were proteases 
(according to the EC classification) that had substrates in the catalytic site vicinity. Of 
this set, 599 structures belonged to one of the five main protease types included in the 
study (see “Methods” section). Furthermore, the metalloproteases had to be discarded 
because the energy functions and annotation pipelines are not configured for the pres-
ence of a catalytic metal in the binding site. Other proteases, with incomplete annota-
tions, were also discarded, resulting in a final set of 310 structures. From this dataset, the 
serine proteases are the most representative group with the highest number of structures 
and a diverse set of subfamilies. A summary of the distribution is provided in Additional 
file 1: Fig. S1. Among the serine protease classes, thrombin (MEROPS id S01.217) and 
trypsin I (MEROPS id S01.151) are highlighted given the number of structures available 
and the experimental cleavage data reported in the database.

The full annotation of all the structures per protease family is available in Additional 
files 2, 3, 4, 5: Tables S1 to S4, and in the code repository. An example of the collected 
data, including the peptide amino acids, the pocket positions of each peptide amino acid, 
the numbering of the peptide residues in the PDB, the peptide chain and the MEROPS 
database id is provided in Table 1. In general, most of the peptides cover just one portion 
of the eight pockets, with lengths between 3 and 5 amino acids.

The subsequent modelling analysis focused on two types of proteases: serine pro-
teases and cysteine proteases. Neither aspartic nor threonine proteases were included 
in the modelling due to some restrictions. For example, in the case of the aspartic pro-
teases, only HIV protease structures are available in complex with multiple ligands, 
which include small molecules as inhibitors. For threonine proteases, most pep-
tide-like substrates contain more than one modified amino acid, thus requiring the 

Table 1 Example of  annotated structures including  the  PDB id, the  amino acids, their 
positions in the pockets, the PDB numbering, PDB peptide chain and MEROPS id

PDB Peptide amino 
acids

Pocket positions PDB residue numbers Chain id MEROPS Id

1gdn GAK S3-S2-S1 1-2-3 B S01.103

1hpg AAPE S4-S3-S2-S1 301-302-303-304 B S01.267

1qix VEPI S4-S3-S2-S1 4-5-6-7 A S01.153

1smf CTKSI S3-S2-S1-S1ʹ-S2ʹ 9-10-11--12-13 I S01.151

2qa9 DAIY S4-S3-S2-S1 1-2-3-4 I S01.262

2wpm EGR S3-S2-S1 1-2-3 L S01.214

2zgh KVPL S4-S3-S2-S1 4-5-6-7 B S01.139

4boh KPR S3-S2-S1 52-53–54 M S01.217
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modelling of most of the substrate conformation. In addition, the serine and cysteine 
proteases have more structures and cleavage-pattern data available, which is helpful 
for assessing the impact of the structural observables on binding recognition. For the 
serine and cysteine proteases models, details of the template sequence, the sequence 
to model, and the substrate UniProtKB id are provided in Additional file 1: Tables S5 
and S6 respectively. As a summary, the total numbers of serine and cysteine protease 
structure subsets that passed the filters, which were partially (only P4-P1) and fully 
modelled (P4-P4ʹ), are available in Table 2.

During the modelling process, most of the original crystal structures were dis-
carded as the NNAAs bound could not be replaced by natural amino acid analogues. 
In addition, most of the protease-peptide crystal conformations are missing the P1ʹ-
P4ʹ portion of the substrate. Because of this, some protein structures do not allow 
the correct modelling of the missing part, generating clashes with the protein amino 
acids located in that area. Those complexes were omitted too, leaving a final list of 34 
serine proteases and 23 cysteine protease models, respectively.

Selection of models for binding recognition analysis

To run the binding recognition analysis, we required proteases with a large amount 
of experimental cleavage data. Therefore, we focused this analysis only on a subset of 
serine proteases (MEROPS ids S01.217, S01.010, S01.151 and S01.131), which covers 
a diverse set of classes with available experimental data. This was not possible with 
the cysteine protease models, because all the structures are caspases with limited 
experimental information.

Regarding the serine proteases subset, the criterion for selecting the protease was 
prioritizing the one structure per class with most of the peptide amino acids present 
in the original crystal structure. Therefore, we included in the set the protease used 
as reference (PDB id: 3tjv), which is the only protease structure that is bound to a 
full 8-mer peptide substrate. The dynamic analysis was run using the selected models 
shown in Table 3.

To compare the conformations of the modelled peptides, a structural alignment was 
performed on the protease structures and the bound peptide conformations (Fig. 1). 
As expected, the structures share the same conformation with some variations in the 
loops, but the peptides tend to differ at positions P1ʹ to P4ʹ, mostly because of the lack 
of coordinate data for this substrate region in the original crystal structure dataset.

Table 2 Number of  serine and  cysteine protease structures remaining with  peptides 
partially (P4-P1) and fully modelled (P4-P4ʹ)

Category Serine proteases Cysteine 
proteases

Total number of structures after the annotation 117 95

Structures remaining with partially modelled peptides (P4-P1) 69 64

Structures remaining with fully modelled peptides (P4-P4ʹ) 34 23
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Analysis of the observables and binding recognition insights

As a first step, the selected serine protease structures (PDB ids 4dt7, 1iau, 1tps and 1ppg) 
with experimental cleavage information available were subjected to refinement of the 
complex using the FlexPepDock protocol, and subsequent sampling with the Backrub 
approach from Rosetta. We calculated the observables for all the snapshots of the tra-
jectory and visualized the normalized averages for all the amino acids at each position 
for every observable. Given that the initial peptide library was designed to contain an 
equal contribution of all the amino acids at all peptide positions, we focused on analys-
ing general tendencies of the descriptors per peptide position. Longer and more exhaus-
tive analyses are required to correlate in detail the frequency of each amino acid and the 
probabilities of being part of a substrate found in a protein, which is already explored by 
other methodologies such as the Sequence Tolerance protocols, among other alterna-
tives [38, 40]. Here we focused on the normalized average values per peptide position, 
which is represented in the following example for the thrombin structure with PDB id 
4dt7 (MEROPS id S01.217) in Fig. 2.

Table 3 Number of serine protease structures that remained after the modelling of NNAAs 
and the missing flanking amino acids

The MEROPS id, UniProtKB id and the peptide sequences after modelling are provided. In addition, the complexes are 
classified into three groups: (i) the structures with experimental data to calculate entropies, (ii) a validation set to calculate 
the descriptors with more than one structure per subfamily class and (iii) a test set to compare the trends of the selected 
structural observables with those calculated in the previous groups
* UniProtKB id

PDB MEROPS Template Model Substrate id* Set

1iau S01.010 IEPD— IEPDTDAP P50502 Entropy

1ppg S01.131 AAPA— AAPAAAPP P16403 Entropy

1tps S01.151 -LTREL– FLTRELAE P23396 Entropy

4dt7 S01.217 VDPRL— VDPRLIDG P04070 Entropy

1ycp S01.217 -GVRGP– GGVRGPRV P02671 Validation

2age S01.151 AAPR— AAPRERTT Q13895 Validation

1ekb S01.156 -DDK— DDDKIVGG P35030 Test

2zck S01.162 -SQY— SSQYSNTE P04279 Test

3tjv S01.147 PTSYAGDD PTSYAGDD Q1D7F8 Test

Fig. 1 Structural superposition of the serine protease structures used in the analysis. a Alignment of the 
crystal structures without the bound peptides. b Superposition of the modelled peptides in cartoon format, 
with an atom representation of the peptide P1 position that interacts with the protein catalytic residues
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Here it is possible to notice differences in the variability and values assigned depend-
ing on the peptide position. For example, in the case of P1 and P1ʹ, positions interacting 
with the catalytic site, the amino acids tend to be completely buried, and the interac-
tions are characterized by hydrogen bonds of the side chain, non-bonded contacts of the 
main chain, captured in the strong interaction energies. In the case of the flanking amino 
acids, the interactions are reduced, but their exposure to the solvent can be crucial in 
determining if the position can be highly promiscuous or not. This is the case at position 
P4, which has a reduced number of interactions and high accessibility to the solvent. In 
this case, it is possible to infer that the chemical nature of the side chain is not relevant 
for substrate recognition and any amino acid is tolerated at this position.

After a general overview, we focused on the crystal structures having experimental 
cleavage data. Here, we analysed the observable averages per position, and compared 
the trends in the observables for all the structures with the information entropies cal-
culated for each MEROPS subfamily/class based on the reported specificity matrix. 
The analysis was made using four serine proteases for which there is a massive amount 
of experimental cleavage data, providing a more robust measure of the entropy per 
substrate position. This gives a more sound comparison against the analysis of the 
structural observables. Among the calculated observables, the accessible surface area 
(ASA) and the single interface energy of each peptide position displayed trends that 
were the most similar to those described by the experimental entropies (Fig. 3). On 
the other hand, the contacts (H-bonds and non-bonded interactions) showed a more 

Fig. 2 Distribution of the average observable at each position of the peptide substrates modelled in the 
structure 4dt7 (MEROPS id S01.217). The observables included are a the relative ASA, b the number of 
hydrogen bonds made by side chain atoms, c the number of non-bonded contacts made by main chain 
atoms and d the interaction energy calculated using the Rosetta scoring function
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chaotic behaviour by peptide position, which reflects the modelling and sampling 
assumptions for the presented analysis. A visualization of the distribution of hydro-
gen bonds and non-bonded contacts are shown in Additional file 1: Fig. S2.

The trends suggest that the ASA and interface energy can be used to infer the 
influence of certain amino acids at the most promiscuous positions surrounding 
the region interacting with the cleavage site (i.e. P1 and P1ʹ). Both observables are 
reasonable options given the exposure of the protease pockets, and the fact that the 
interface energy covers not only contact contributions, but also a sum of empirical 
and physics-based terms that provides a better perspective of the binding process. 
The comparison was also analysed numerically after running the average Spearman 
correlation per position on the substrate for the selected structures (Additional file 5: 
Table S7). We found that the only observables with positive average correlations were 
the relative ASA (0.33) and the interface energy (0.22). However, it is not possible yet 
to correlate with accuracies higher than 0.5 the entropies associated to each pocket 
position. The latter might improve if more exhaustive sampling and energy calcula-
tions are used to discriminate between amino acids at each binding site pocket posi-
tion. In addition, having more experimental data covering many different peptides 
would provide a better training and test set.

A similar analysis of the observable trends for the interaction energy and the relative 
ASA was run using all the models included in the study. A graphical representation of 
the values is provided in Additional file  1: Fig. S3. In all the cases, the observables 

Fig. 3 Average values of structural observables at each position of the peptides modelled for structures: 4dt7 
(MEROPS id S01.217) in turquoise, 1iau (MEROPS id S01.010) in sky blue, 1tps (MEROPS id S01.151) in blue, 
and 1ppg (MEROPS id S01.131) in black. The observables included are a the interaction energy calculated 
using the Rosetta scoring function, b the relative accessible surface area, ASA, and c the entropy per position 
calculated from experimental cleavage data
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show similar trends that can be extrapolated to identify which structural drivers can 
help to understand the binding recognition of substrates.

Finally, to support the usage of any structure per class to obtain similar results, 
we compared different structures belonging to the same subfamily class, as well as 
two independent random peptide libraries. This analysis allowed us to check if the 
protocol can be applied to any structure and model available in the PDB, and also to 
understand the independence of the results if different peptide library datasets are 
used to run the sampling protocol. The initial peptide-protease complex was refined 
to avoid bias of the initial structures. In Fig. 4 we can observe the trends covering two 
structures of the main two serine protease families: S01.217 (thrombin) and S01.151 
(trypsin I). As expected, the plots are similar, with the cleavage region being less 
exposed to the solvent and with a higher interface energy associated. In some posi-
tions (i.e. P1ʹ or P2ʹ) the averages can vary a little from the expected behaviour, but 
the general consistency allows us to propose these metrics to study any other pro-
tease-peptide complex using the code protocols provided.

Discussion
Here we provide an open source protocol to model peptide substrates bound to well-
annotated structures of proteases, which can be applied to help gain an insight of their 
binding recognition using a structure and dynamic-based approach. We focused on a 

Fig. 4 Average values of a the relative ASA at each position of the peptide substrates modelled for structures 
2age (red and orange) and 1tps (blue and cyan) with MEROPS id S01.151 (trypsin I) from two independent 
random peptide libraries, and b the interaction energy calculated using the Rosetta scoring function. 
Similarly, the mean values of c the relative ASA at each position of the peptide substrates modelled for 
structures 4dt7 (green and lime) and 1ycp (purple and pink) with MEROPS id S01.217 (thrombin) from two 
independent random peptide libraries, and d the interaction energy calculated using the Rosetta scoring 
function. The second library is named as 2L in the figure labels
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subfamily of serine proteases of biological importance, with emphasis on a subset for 
which experimental cleavage data are available. After modelling a random library of pep-
tides based on reconstructed peptide substrates bound to protease structures, we found 
that structural observables such as the accessible surface area (ASA) and single-residue 
interface energies show a similar trend as the information-entropies derived from the 
protease specificity matrices. In the same way, we suggest that other peptide sequences 
can be studied from a structural perspective to determine which may be potential sub-
strates of a protease of interest.

Modelling peptide substrates bound to proteases has been done before [29, 59, 60], 
but the methods have not been scaled up to run the sort of massive analysis we have 
performed in this work. The initial modelled conformations are subsequently improved 
by subjecting the models to dynamic analysis to re-accommodate potential wrong 
peptide conformations. The code provided is a meta-protocol that takes advantage of 
various open source projects, aiming to obtain reliable models with efficient computa-
tional times using local infrastructure. It facilitates the modelling of other complexes 
and allows the optimization of our proposal through, for example, the increase of sam-
pling time or the addition of tools able to refine the models and in silico findings. The 
code is portable, and the dependencies can be easily installed to predict the models and 
run the structural analysis. The computational time for a single substrate/protease can 
be completed in a local machine/laptop in approximately 10 to 20 min. For large-scale 
analysis, using libraries of hundreds of peptides, it is recommended to use a high per-
formance computing infrastructure, which can be optimized by sending jobs in parallel: 
one substrate per node. The main goal of the protocol is to contribute to the understand-
ing of the enzymes’ specificity toward their substrates without exclusively requiring 
knowledge-based strategies, particularly for novel proteases without experimental data 
available.

Understanding the basis of substrate promiscuity of single proteins, such as proteases, 
and within whole families, is becoming important in protein design and directed evolu-
tion experiments, which can lead to new catalytic functions in old enzymes [61]. For 
example, some enzymes exhibit a high specificity towards their substrates, fine-tuned 
by evolution to allow them to distinguish between functional groups, isomers, and poly-
mer units. Others, however, do not follow this classical paradigm and are able to catalyse 
distinctly different ligands [62]. It has been suggested that such substrate promiscuity 
could have an important role in enzyme evolution, where they exhibit different levels of 
specificity, ranging from completely specific to very broad [63]. One way to quantify this 
is through the analysis of experimental cleavage data, which can be limited depending 
on the protease of interest. Therefore, it is necessary to develop de novo computational 
approaches to infer the specificity of these enzymes [64]. In this work, we propose sim-
ple observables such as the relative ASA and the Rosetta calculated energy, which can be 
embedded in more elaborated pipelines able to discriminate with more certainty if novel 
sequences are susceptible of being cleaved by a reference protease.

In fact, our method can provide tools to study the specific frequency and prob-
ability of each amino acid at each position in a peptide substrate. However, to have a 
better performance, it will be required to combine multiple observables with other 
parameters, as well as model and sample libraries of known substrates instead of 
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libraries of random peptides with equal contribution per amino acid per position 
[31]. Molecular mechanics can capture, in part, the essence of the interactions, 
but other considerations associated with the intrinsic catalytic reactions should be 
included to increase the accuracy of the calculations [65]. Published protocols such 
as the sequence tolerance methodology [40], and other energy-based approaches, 
can infer the amino acid contribution, but more exhaustive or hybrid methodologies 
are required to successfully predict novel substrates in comparison with the available 
sequence-based methodologies [66]. In addition, more thorough sampling, applied 
massively to many peptide binders, can positively influence the conformational 
landscape of the peptides, and capture additional information that can be better cor-
related with the experimental specificity data.

Finally, a crucial aspect to complement the binding studies is the availability of 
more structural complexes of proteases bound to peptide substrates. In this case, 
the straightforward approach is attempting to model known peptide substrates given 
the experimental information available. Here, we obtained a representative number 
of complexes that were modelled, but there is still a large set of protease structures 
that cannot be rigorously studied due to the presence of multiple non-natural amino 
acids and chemical modifications in the bound ligands. Because of this, it is impor-
tant to parameterize as much as possible amino acid variants to allow the inclusion 
of modified chemical structures, improving the virtual screening of peptidomimetics 
and other types of modified substrates for drug discovery purposes [67]. The anno-
tated set of structures, and the computational protocols provided, can help accel-
erate the task of predicting protease substrates and supporting the engineering of 
novel enzymes for medical and industrial applications.

Conclusion
Based on the modelling and simulation approach proposed in this work, it is possible 
to model proteases in complex with peptide substrates and use the information to 
study their binding recognition. Calculated observables such as the relative ASA and 
the interface energy are suitable descriptors that can be compared with the experi-
mental cleavage data of each pocket in the binding site. However, more exhaustive 
calculations are needed to discriminate specificity profiles between proteases by 
improving the correlations, and potentially use the information to predict the inter-
action with unknown substrates. In the case of researchers working on structure-
based approaches with proteases, the descriptors can be useful also to filter peptides 
from large combinatorial libraries based on the propensity to generate certain types 
of interactions or being exposed to the solvent at different substrate positions. The 
code provided is user-friendly, open source, and can be implemented to study novel 
substrates and protease structures available in public repositories.

Methods
The methods are split into two parts. The first describes the selection and annotation 
of protease crystal structures, and subsequent modelling of the peptide substrate bind-
ing region using the crystal structures as templates. The second uses the methodology 
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described in the first section to model a set of proteases and compare various structural 
features with against the experimental cleavage data to see if any features might provide 
a predictor of strength of binding.

Annotation and modelling of protease structures bound to peptide substrates

This part of the protocol includes two main workflows: the first involves the annota-
tion and filtering of protease structures, and the second uses the annotated proteases to 
model in various peptide substrates. A summary of the main workflow steps is shown in 
Fig. 5.

Annotation workflow

Dataset of protease structures

Initially, a set of enzyme structures was downloaded from the Protein Data Bank (PDB) 
[37] based on their assigned Enzyme Commission (EC) numbers. The selected proteases 
were those that had been co-crystallized with ligands of between 3 and 12 residues, and 
where at least one residue was classified as peptide-like in the Chemical Component 
Dictionary [42]. The structures containing only unknown residues were removed from 
the initial list. The remaining entries in the dataset were annotated by identifying the 
protein chains directly interacting with the ligands, using information from PDBsum 
[43]. Structures that did not have this information were discarded. The protein chains 
identified were then annotated with their EC number, UniProtKB [44] and MEROPS ids 
[9], and Pfam [45] and CATH domains [46] of the regions interacting with the ligand. 
Where the data from the databases was misleading (e.g. same chain letter had multiple 
UniProtKB ids, or did not have any), the entry was dropped. To get a list of the catalytic 

Fig. 5 Summary of the main annotation and modelling workflow steps. The left-hand image represents a 
peptide-like ligand, bound to a protease, with the P1 position circled in green. The right-hand image shows 
a partial peptide bound to a protease where the missing residues (green) have been modelled to fill the full 
peptide binding site
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residues and their roles, we used data from M-CSA [28] and PDBsum. For the chains 
that did not have catalytic residues reported in either database, we performed a homol-
ogy search by creating pairwise sequence alignments with the annotated chains using 
ClustalW [47]. If an alignment resulted in more than 50% sequence identity, the catalytic 
residues and their roles were inferred from the target sequence to the query. For practi-
cal purposes, the first alignment satisfying the identity threshold was the one used.

Identification of substrates in catalytic sites

To check if the bound ligands were in the vicinity of the catalytic site, we used the NAC-
CESS program (http://wolf.bms.umist .ac.uk/nacce ss/) to calculate solvent accessible 
areas (SAS) of protein chain residues with and without the bound ligand. If the accessi-
bility of the catalytic residues changed after ligand removal, we considered the substrate 
to be in the catalytic site, and hence included the structure in our data set. The acces-
sibility threshold used was 0. Structures lacking annotated catalytic residues were not 
analysed.

Annotation of protease amino acid binding pockets

To identify the pocket residues where the substrates bind to the enzyme, we used the 
coordinates of the P4-P4ʹ residues of a reference substrate (PDB id: 3tjv) for the serine 
proteases (Fig. 6). This reference was chosen because the peptide substrate spans all the 
S4-S4ʹ pockets, and was used to annotate the protease pockets. The reference structure 
used for cysteine proteases was PDB id: 2j32; for threonine proteases was PDB id:4qby; 
and for aspartic proteases was PDB id: 4obf. For each reference peptide residue, we iden-
tified residues in the protease that had at least one atom within a 4.5 Å cut-off of the 
ligand. The basis of this threshold is the 5 Å maximum distance reported between a pep-
tide and the enzyme’s catalytic residues for the nucleophilic attack [48]. These groups 
of protease residues were annotated as the S4-S4ʹ pockets according to the annotation 
of the closest reference residues (P4-P4ʹ). Some residues could belong to several pock-
ets. We listed all identified pocket residues as forming the binding site of the reference 

Fig. 6 Schematic of a protease bound to a substrate, with the positions named according to the location 
of the cleavage site. a Peptide ligand bound to PDB entry 3tjv, a human serine protease granzyme H crystal 
structure. b ‘Zoomed in’ representation of the peptide coloured based on the positions interacting at the 
binding site

http://wolf.bms.umist.ac.uk/naccess/
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protease. To annotate the pockets in other structures of the family, we performed struc-
tural alignments using PDBeFold (http://www.ebi.ac.uk/msdsr v/ssm/).

Final versions of the annotated structures

To annotate substrate residues with the pockets to which they bind, the reference sub-
strate was projected to other structures using the generated structural alignments. The 
target residue with the most atoms around the reference residue within a 2 Å cut-off was 
assigned to the same pocket as the reference. The annotated complexes were subjected 
to the removal of acetyl or diazomethane groups, which are sometimes added to the sub-
strates prior to crystallization. In some cases, gaps appeared between aligned target resi-
dues. For example, the first residue might be assigned to the S4 pocket, whereas other 
residues might be assigned to pockets S2 onwards—with no residue assigned to S3. In 
such cases, a manual re-annotation of the target pockets was done to close the gaps, by 
moving the shorter part of the substrate to join the longer part, which was taken to have 
been properly assigned. Finally, substrates that were partially aligned were truncated for 
further analysis. Substrates with fewer than three residues in the binding pockets were 
discarded. A detailed list of the structures with the full annotations are available in Addi-
tional files 2, 3, 4 and 5: Information for serine (117 structures—Table S1), cysteine (95 
structures—Table  S2), aspartic (49 structures—Table  S3) and threonine proteases (49 
structures—Table S4).

Classification of structures based on MEROPS family information

Using the MEROPS database classification, the proteases were split into four categories: 
serine, cysteine, aspartic and threonine proteases. For some protease families, we found 
representative structures of subfamilies/classes. This is the case for serine proteases 
in MEROPS family S01 (serine endopeptidases) and subfamily S1A, which contains a 
set of structurally characterized homologues such as thrombin and trypsin 1. In total, 
we selected eight representative PDB structures for this subfamily. They were chosen 
to have one structure per class with the longest peptide bound. This set of serine pro-
tease structures was split into those bound to peptides composed exclusively of natural 
amino acids, and those containing non-natural amino acids (NNAAs). From the latter 
set, we selected substrates containing a maximum of only one modified amino acid in 
any position of the sequence, to preserve as much as possible the true conformation of 
the peptide.

Modelling workflow

Modelling of full peptide substrates composed of natural amino acids

Since we only want to analyse protease-peptide complexes which could occur in nature, 
but we do not want to lose information from the complex structures with peptide sub-
strates containing NNAAs, or with missing amino acids in the P4-P4ʹ positions, we used 
a modelling approach as outlined below.

First, the MEROPS database (release 12.1) was accessed to retrieve information about 
known peptide substrates. According to the selected substrate sequences, a position-by-
position alignment was run to map which natural amino acid should replace the NNAA 
originally found in the structure. Second, the mapped substrates were filtered based on 

http://www.ebi.ac.uk/msdsrv/ssm/
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the similarity of the NNAA to the amino acid to be replaced, according to a metric cal-
culated using the RDKit package (https ://www.rdkit .org/). Here, Morgan fingerprint 
representations of the NNAA and the natural amino acid were compared using the Tani-
moto coefficient [49]. The closer the values to 1.0, the more similar the side chains. The 
Rosetta fixbb tool [50] was applied to predict the new side chain’s conformation. The 
mutation protocol uses the Dunbrack rotamer libraries to select the most probable rota-
mer of the new amino acid [51]. After that, the system was relaxed using Rosetta with 
only side chains treated as flexible.

The next task was to model any missing residues at the P4-P4ʹ positions. The same 
substrates chosen from the MEROPS database were used as references to identify which 
amino acids should be included in the missing flanking region. The Modeller software 
[52] was employed to perform the reconstruction, using the bound peptide as template 
to model the missing part. The best model was subjected to a final relaxation of side 
chains with Rosetta. After the modelling, a list of proteases bound to 8-mer peptides 
that are part of known protein substrates was generated. A graphical example of the 
modelling and reconstruction is shown in Additional file 1: Fig. S4.

Binding recognition analysis of some protease‑peptide complexes

For this analysis, we selected a small subset of the modelled protease-peptide complexes 
to run simulations and capture structural observables that might correlate with enzyme 
binding recognition, as characterized by information-entropies derived from experi-
mental cleavage data.

Selection of protease structures and entropy calculation

From the list of proteases available, structures were selected from each class for the sim-
ulations. The classes were chosen based on the availability of experimental cleavage data, 
which was used to create an experimental measure (from an information perspective) 
of the specificity of each position in the peptide template. The cleavage entropy of each 
position is a measure used to rank-order proteases by specificity, and is defined as [8]:

where nij is the occurrence of amino acid i at position j of the S4-S4ʹ binding region, 
divided by the total number of protease substrates. According to the formula, the single 
position entropy, H(j), ranges from 0 to 1, where 0 means absolute prevalence of a cer-
tain amino acid and 1 means equal usage of all amino acids. Using the calculated H(j), we 
obtained the total cleavage per subfamily/class by:

where Hcleavage is the total cleavage entropy, which ranges between 0 and 8, and repre-
sents the sum of the eight positions.

H
(

j
)

= −

∑20

i=1
nijlog20
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H
(

j
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https://www.rdkit.org/
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Modelling of random peptide libraries

Based on each protease-peptide complex selected, we modelled two independent ran-
dom libraries of 480 peptides, using the initial bound peptide conformation as tem-
plate. The libraries were designed randomly with a uniform distribution of the amino 
acids at each position in the P4-P4ʹ region. Total coverage would require  820 peptides, 
but for this analysis we limited the number of computational calculations to provide a 
fairly broad exploration of peptide binding. The idea was to observe the influence of each 
amino acid at each position. The peptides were modelled by iterative single substitutions 
of each amino acid in the template by a new amino acid from the peptide library, using 
the Rosetta fixbb protocol. After each mutation, a relaxation phase was run with a poste-
rior refinement of the complex using the FlexPepDock protocol from Rosetta [53].

Dynamic analysis

For each optimized protease-peptide model from the random libraries, a dynamic analy-
sis was run to sample not only the side chain conformations, but also the backbone of 
both the protein and the peptide. For this purpose, the Backrub method from Rosetta 
was used [38]. This employs a Monte Carlo mover that allows dihedral rotations and 
translations of the structure using a Metropolis criterion based on bond-angle penalties 
from reference force fields. The simulations were run for 5000 Monte Carlo steps, with 
a kT factor of 1.2 to allow more flexibility of the system without losing stability [54]. A 
total of 500 frames per complex were extracted. The Monte Carlo simulations were used 
to sample the systems with computational efficiency. They enable the exploration of the 
conformational space around the complex minimum without requiring massive compu-
tational resources, as in the case of molecular dynamics or more exhaustive approaches.

Calculation of structural observables and comparisons

From the frames obtained, a set of observables were calculated per position in the pep-
tide. Specifically, we calculated the number of potential hydrogen bonds made by the 
main and side chain atoms, the number of non-bonded interactions made by the main 
and side chain atoms, the relative accessible surface area (ASA) and a single interaction 
energy associated with each amino acid. The hydrogen bonds and non-bonded contacts 
were calculated using HBPLUS [55]. The accessible surface area was calculated with 
DSSP [56] using BioPython functionalities [57], and the interaction energies were calcu-
lated using the Rosetta scoring function [58].

We calculated averages of the observables per amino acid in each position of the pep-
tide substrate. At the jth position for amino acid type i, the average value of observable O 
is defined as

where o is the observable, f is the frame number, Nf is the total number of frames and 
α indexes the simulation run (having one simulation for each binding-peptide from the 
dataset). Then, to compare the values with the previous calculated information entro-
pies, we averaged the observed values for all the amino acids at each position in the 

Oij =
1

Nf

∑

α

∑

f

oαfij ,
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P4-P4ʹ region. The comparison was based on observing the averages of the structural 
descriptors, and then checked to see which are able to describe better the experimental 
entropies reported for each binding pocket. A summary of the modelling/dynamic pro-
tocols used in this section is shown in Fig. 7.
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