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Abstract Bats host virulent zoonotic viruses without experiencing disease. A mechanistic

understanding of the impact of bats’ virus hosting capacities, including uniquely constitutive

immune pathways, on cellular-scale viral dynamics is needed to elucidate zoonotic emergence. We

carried out virus infectivity assays on bat cell lines expressing induced and constitutive immune

phenotypes, then developed a theoretical model of our in vitro system, which we fit to empirical

data. Best fit models recapitulated expected immune phenotypes for representative cell lines,

supporting robust antiviral defenses in bat cells that correlated with higher estimates for within-

host viral propagation rates. In general, heightened immune responses limit pathogen-induced

cellular morbidity, which can facilitate the establishment of rapidly-propagating persistent

infections within-host. Rapidly-transmitting viruses that have evolved with bat immune systems will

likely cause enhanced virulence following emergence into secondary hosts with immune systems

that diverge from those unique to bats.

Introduction
Bats have received much attention in recent years for their role as reservoir hosts for emerging viral

zoonoses, including rabies and related lyssaviruses, Hendra and Nipah henipaviruses, Ebola and Mar-

burg filoviruses, and SARS coronavirus (Calisher et al., 2006; Wang and Anderson, 2019). In most

non-Chiropteran mammals, henipaviruses, filoviruses, and coronaviruses induce substantial morbidity

and mortality, display short durations of infection, and elicit robust, long-term immunity in hosts sur-

viving infection (Nicholls et al., 2003; Hooper et al., 2001; Mahanty and Bray, 2004). Bats, by con-

trast, demonstrate no obvious disease symptoms upon infection with pathogens that are highly

virulent in non-volant mammals (Schountz et al., 2017) but may, instead, support viruses as long-

term persistent infections, rather than transient, immunizing pathologies (Plowright et al., 2016).
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Recent research advances are beginning to shed light on the molecular mechanisms by which

bats avoid pathology from these otherwise virulent pathogens (Brook and Dobson, 2015). Bats

leverage a suite of species-specific mechanisms to limit viral load, which include host receptor

sequence incompatibilities for some bat-virus combinations (Ng et al., 2015; Takadate et al., 2020)

and constitutive expression of the antiviral cytokine, IFN-a, for others (Zhou et al., 2016). Typically,

the presence of viral RNA or DNA in the cytoplasm of mammalian cells will induce secretion of type I

interferon proteins (IFN-a and IFN-b), which promote expression and translation of interferon-stimu-

lated genes (ISGs) in neighboring cells and render them effectively antiviral (Stetson and Medzhi-

tov, 2006). In some bat cells, the transcriptomic blueprints for this IFN response are expressed

constitutively, even in the absence of stimulation by viral RNA or DNA (Zhou et al., 2016). In non-fly-

ing mammals, constitutive IFN expression would likely elicit widespread inflammation and concomi-

tant immunopathology upon viral infection, but bats support unique adaptations to combat

inflammation (Zhang et al., 2013; Ahn et al., 2019; Xie et al., 2018; Pavlovich et al., 2018) that

may have evolved to mitigate metabolic damage induced during flight (Kacprzyk et al., 2017). The

extent to which constitutive IFN-a expression signifies constitutive antiviral defense in the form of

functional IFN-a protein remains unresolved. In bat cells constitutively expressing IFN-a, some pro-

tein-stimulated, downstream ISGs appear to be also constitutively expressed, but additional ISG

induction is nonetheless possible following viral challenge and stimulation of IFN-b (Zhou et al.,

2016; Xie et al., 2018). Despite recent advances in molecular understanding of bat viral tolerance,

the consequences of this unique bat immunity on within-host virus dynamics—and its implications

for understanding zoonotic emergence—have yet to be elucidated.

The field of ‘virus dynamics’ was first developed to describe the mechanistic underpinnings of

long-term patterns of steady-state viral load exhibited by patients in chronic phase infections with

HIV, who appeared to produce and clear virus at equivalent rates (Nowak and May, 2000;

Ho et al., 1995). Models of simple target cell depletion, in which viral load is dictated by a bottom-

eLife digest Bats can carry viruses that are deadly to other mammals without themselves

showing serious symptoms. In fact, bats are natural reservoirs for viruses that have some of the

highest fatality rates of any viruses that people acquire from wild animals – including rabies, Ebola

and the SARS coronavirus.

Bats have a suite of antiviral defenses that keep the amount of virus in check. For example, some

bats have an antiviral immune response called the interferon pathway perpetually switched on. In

most other mammals, having such a hyper-vigilant immune response would cause harmful

inflammation. Bats, however, have adapted anti-inflammatory traits that protect them from such

harm, include the loss of certain genes that normally promote inflammation. However, no one has

previously explored how these unique antiviral defenses of bats impact the viruses themselves.

Now, Brook et al. have studied this exact question using bat cells grown in the laboratory. The

experiments made use of cells from one bat species – the black flying fox – in which the interferon

pathway is always on, and another – the Egyptian fruit bat – in which this pathway is only activated

during an infection. The bat cells were infected with three different viruses, and then Brook et al.

observed how the interferon pathway helped keep the infections in check, before creating a

computer model of this response.

The experiments and model helped reveal that the bats’ defenses may have a potential downside

for other animals, including humans. In both bat species, the strongest antiviral responses were

countered by the virus spreading more quickly from cell to cell. This suggests that bat immune

defenses may drive the evolution of faster transmitting viruses, and while bats are well protected

from the harmful effects of their own prolific viruses, other creatures like humans are not.

The findings may help to explain why bats are often the source for viruses that are deadly in

humans. Learning more about bats’ antiviral defenses and how they drive virus evolution may help

scientists develop better ways to predict, prevent or limit the spread of viruses from bats to humans.

More studies are needed in bats to help these efforts. In the meantime, the experiments highlight

the importance of warning people to avoid direct contact with wild bats.

Brook et al. eLife 2020;9:e48401. DOI: https://doi.org/10.7554/eLife.48401 2 of 24

Research article Ecology Epidemiology and Global Health

https://doi.org/10.7554/eLife.48401


up resource supply of infection-susceptible host cells, were first developed for HIV (Perelson, 2002)

but have since been applied to other chronic infections, including hepatitis-C virus (Neumann et al.,

1998), hepatitis-B virus (Nowak et al., 1996) and cytomegalovirus (Emery et al., 1999). Recent

work has adopted similar techniques to model the within-host dynamics of acute infections, such as

influenza A and measles, inspiring debate over the extent to which explicit modeling of top-down

immune control can improve inference beyond the basic resource limitation assumptions of the tar-

get cell model (Baccam et al., 2006; Pawelek et al., 2012; Saenz et al., 2010; Morris et al., 2018).

To investigate the impact of unique bat immune processes on in vitro viral kinetics, we first under-

took a series of virus infection experiments on bat cell lines expressing divergent interferon pheno-

types, then developed a theoretical model elucidating the dynamics of within-host viral spread. We

evaluated our theoretical model analytically independent of the data, then fit the model to data

recovered from in vitro experimental trials in order to estimate rates of within-host virus transmission

and cellular progression to antiviral status under diverse assumptions of absent, induced, and consti-

tutive immunity. Finally, we confirmed our findings in spatially-explicit stochastic simulations of fitted

time series from our mean field model. We hypothesized that top-down immune processes would

overrule classical resource-limitation in bat cell lines described as constitutively antiviral in the litera-

ture, offering a testable prediction for models fit to empirical data. We further predicted that the

most robust antiviral responses would be associated with the most rapid within-host virus propaga-

tion rates but also protect cells against virus-induced mortality to support the longest enduring

infections in tissue culture.

Results

Virus infection experiments in antiviral bat cell cultures yield reduced
cell mortality and elongated epidemics
We first explored the influence of innate immune phenotype on within-host viral propagation in a

series of infection experiments in cell culture. We conducted plaque assays on six-well plate mono-

layers of three immortalized mammalian kidney cell lines: [1] Vero (African green monkey) cells,

which are IFN-defective and thus limited in antiviral capacity (Desmyter et al., 1968); [2] RoNi/7.1

(Rousettus aegyptiacus) cells which demonstrate idiosyncratic induced interferon responses upon

viral challenge (Kuzmin et al., 2017; Arnold et al., 2018; Biesold et al., 2011; Pavlovich et al.,

2018); and [3] PaKiT01 (Pteropus alecto) cells which constitutively express IFN-a (Zhou et al., 2016;

Crameri et al., 2009). To intensify cell line-specific differences in constitutive immunity, we carried

out infectivity assays with GFP-tagged, replication-competent vesicular stomatitis Indiana viruses:

rVSV-G, rVSV-EBOV, and rVSV-MARV, which have been previously described (Miller et al., 2012;

Wong et al., 2010). Two of these viruses, rVSV-EBOV and rVSV-MARV, are recombinants for which

cell entry is mediated by the glycoprotein of the bat-evolved filoviruses, Ebola (EBOV) and Marburg

(MARV), thus allowing us to modulate the extent of structural, as well as immunological, antiviral

defense at play in each infection. Previous work in this lab has demonstrated incompatibilities in the

NPC1 filovirus receptor which render PaKiT01 cells refractory to infection with rVSV-MARV (Ng and

Chandrab, 2018, Unpublished results), making them structurally antiviral, over and above their con-

stitutive expression of IFN-a. All three cell lines were challenged with all three viruses at two multi-

plicities of infection (MOI): 0.001 and 0.0001. Between 18 and 39 trials were run at each cell-virus-

MOI combination, excepting rVSV-MARV infections on PaKiT01 cells at MOI = 0.001, for which only

eight trials were run (see Materials and methods; Figure 1—figure supplements 1–

3, Supplementary file 1).

Because plaque assays restrict viral transmission neighbor-to-neighbor in two-dimensional cellular

space (Howat et al., 2006), we were able to track the spread of GFP-expressing virus-infected cells

across tissue monolayers via inverted fluorescence microscopy. For each infection trial, we monitored

and re-imaged plates for up to 200 hr of observations or until total monolayer destruction, proc-

essed resulting images, and generated a time series of the proportion of infectious-cell occupied

plate space across the duration of each trial (see Materials and methods). We used generalized addi-

tive models to infer the time course of all cell culture replicates and construct the multi-trial dataset

to which we eventually fit our mechanistic transmission model for each cell line-virus-specific combi-

nation (Figure 1; Figure 1—figure supplements 1–5).
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All three recombinant vesicular stomatitis viruses (rVSV-G, rVSV-EBOV, and rVSV-MARV) infected

Vero, RoNi/7.1, and PaKiT01 tissue cultures at both focal MOIs. Post-invasion, virus spread rapidly

across most cell monolayers, resulting in virus-induced epidemic extinction. Epidemics were less

severe in bat cell cultures, especially when infected with the recombinant filoviruses, rVSV-EBOV and

rVSV-MARV. Monolayer destruction was avoided in the case of rVSV-EBOV and rVSV-MARV infec-

tions on PaKiT01 cells: in the former, persistent viral infection was maintained throughout the 200 hr

duration of each experiment, while, in the latter, infection was eliminated early in the time series,

preserving a large proportion of live, uninfectious cells across the duration of the experiment. We

assumed this pattern to be the result of immune-mediated epidemic extinction (Figure 1). Patterns

from MOI = 0.001 were largely recapitulated at MOI = 0.0001, though at somewhat reduced total

proportions (Figure 1—figure supplement 5).

A theoretical model fit to in vitro data recapitulates expected immune
phenotypes for bat cells
We next developed a within-host model to fit to these data to elucidate the effects of induced and

constitutive immunity on the dynamics of viral spread in host tissue (Figure 1). The compartmental

within-host system mimicked our two-dimensional cell culture monolayer, with cells occupying five

distinct infection states: susceptible (S), antiviral (A), exposed (E), infectious (I), and dead (D). We

modeled exposed cells as infected but not yet infectious, capturing the ‘eclipse phase’ of viral inte-

gration into a host cell which precedes viral replication. Antiviral cells were immune to viral infection,

in accordance with the ’antiviral state’ induced from interferon stimulation of ISGs in tissues adjacent

to infection (Stetson and Medzhitov, 2006). Because we aimed to translate available data into

modeled processes, we did not explicitly model interferon dynamics but instead scaled the rate of

cell progression from susceptible to antiviral (r) by the proportion of exposed cells (globally) in the

system. In systems permitting constitutive immunity, a second rate of cellular acquisition of antiviral

status (") additionally scaled with the global proportion of susceptible cells in the model. Compared

with virus, IFN particles are small and highly diffusive, justifying this global signaling assumption at

the limited spatial extent of a six-well plate and maintaining consistency with previous modeling

approximations of IFN signaling in plaque assay (Howat et al., 2006).

To best represent our empirical monolayer system, we expressed our state variables as propor-

tions (PS, PA, PE, PI , and PD), under assumptions of frequency-dependent transmission in a well-

mixed population (Keeling and Rohani, 2008), though note that the inclusion of PD (representing

the proportion of dead space in the modeled tissue) had the functional effect of varying transmission

with infectious cell density. This resulted in the following system of ordinary differential equations:

dPS

dt
¼ bPD PSþ PAð Þ�bPSPI ��PS � �PEPS � "PS þ cPA (1)

dPA

dt
¼ �PEPSþ "PS � cPA��PA (2)

dPE

dt
¼ bPSPI �sPE ��PE (3)

dPI

dt
¼ sPE �aPI ��PI (4)

dPD

dt
¼ � PS þPE þ PI þ PAð ÞþaPI � bPD PS þ PAð Þ (5)

We defined ’induced immunity’ as complete, modeling all cells as susceptible to viral invasion at

disease-free equilibrium, with defenses induced subsequent to viral exposure through the term r. By

contrast, we allowed the extent of constitutive immunity to vary across the parameter range of " >

0, defining a ’constitutive’ system as one containing any antiviral cells at disease-free equilibrium. In

fitting this model to tissue culture data, we independently estimated both r and "; as well as the

cell-to-cell transmission rate, b, for each cell-virus combination. Since the extent to which

Brook et al. eLife 2020;9:e48401. DOI: https://doi.org/10.7554/eLife.48401 4 of 24

Research article Ecology Epidemiology and Global Health

https://doi.org/10.7554/eLife.48401


rVSV−G rVSV−EBOV rVSV−MARV

V
e
ro

R
o
N

i/7
.1

P
a
K

iT
0
1

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

0.0

0.1

0.2

0.0

0.1

0.2

0.0

0.1

0.2

hrs post−infection

p
ro

p
o
rt

io
n

persistent infection virus−induced epidemic extinction immune−mediated epidemic extinction modeled infectious time series

Figure 1. Fitted time series of infectious cell proportions from mean field model for rVSV-G, rVSV-EBOV, and rVSV-MARV infections (columns) on Vero,

RoNi/7.1, and PaKiT01 cell lines (rows) at MOI = 0.001. Results are shown for the best fit immune absent model on Vero cells, induced immunity model

on RoNi/7.1 cells, and constitutive (for rVSV-VSVG and rVSV-EBOV) and induced (for rVSV-MARV) immunity models on PaKiT01 cells. Raw data across all

trials are shown as open circles (statistical smoothers from each trial used for fitting are available in Figure 1—figure supplements 2–3). Model output

is shown as a solid crimson line (95% confidence intervals by standard error = red shading). Panel background corresponds to empirical outcome of the

average stochastic cell culture trial (persistent infection = white; virus-induced epidemic extinction = gray; immune-mediated epidemic

extinction = black). Parameter values are listed in Table 1 and Supplementary file 4. Results for absent/induced/constitutive fitted models across all

cell lines are shown in Figure 1—figure supplement 4 (MOI = 0.001) and Figure 1—figure supplement 5 (MOI = 0.0001).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Cell culture models of viral propagation.

Figure supplement 2. Time series data to which mean field mechanistic models were fit, across rVSV-G (left), rVSV-EBOV (middle), and rVSV-MARV

(right) infections on Vero, RoNi/7.1, and PaKiT01 cell lines, at MOI = 0.001.

Figure supplement 3. Time series data to which mean field mechanistic models were fit, across rVSV-G (left), rVSV-EBOV (middle), and rVSV-MARV

(right) infections on Vero, RoNi/7.1, and PaKiT01 cell lines, at MOI = 0.0001.

Figure supplement 4. Figure replicates Figure 1 (main text) but includes all output across mean field model fits assuming (A) absent immunity, (B)

induced immunity, and (C) constitutive immunity.

Figure supplement 5. Figure replicates Figure 1—figure supplement 4 exactly but shows model fits and data for all cell-virus combinations at

MOI = 0.0001.

Figure supplement 6. IFN gene expression in bat cells at baseline and upon viral stimulation.

Figure supplement 7. Curve fits to control data for standard birth (b = .025) and natural mortality (� ¼ 1

121
;

1

191
;
1

84
hours for, respectively, Vero, RoNi/7.1,

and PaKiT01 cell lines) rates across all three cell lines.
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constitutively-expressed IFN-a is constitutively translated into functional protein is not yet known for

bat hosts (Zhou et al., 2016), this approach permitted our tissue culture data to drive modeling

inference: even in PaKiT01 cell lines known to constitutively express IFN-a, the true constitutive

extent of the system (i.e. the quantity of antiviral cells present at disease-free equilibrium) was

allowed to vary through estimation of ": For the purposes of model-fitting, we fixed the value of c,

the return rate of antiviral cells to susceptible status, at 0. The small spatial scale and short time

course (max 200 hours) of our experiments likely prohibited any return of antiviral cells to susceptible

status in our empirical system; nonetheless, we retained the term c in analytical evaluations of our

model because regression from antiviral to susceptible status is possible over long time periods in

vitro and at the scale of a complete organism (Radke et al., 1974; Rasmussen and Farley, 1975;

Samuel and Knutson, 1982).

Before fitting to empirical time series, we undertook bifurcation analysis of our theoretical model

and generated testable hypotheses on the basis of model outcomes. From our within-host model

system (Equation 1-5), we derived the following expression for R0, the pathogen basic reproduction

number (Supplementary file 2):

R0 ¼
bs b��ð Þ cþ�ð Þ

b sþ�ð Þ aþ�ð Þ cþ�þ "ð Þ
(6)

Pathogens can invade a host tissue culture when R0>1. Rapid rates of constitutive antiviral acquisi-

tion (") will drive R0<1: tissue cultures with highly constitutive antiviral immunity will be therefore

resistant to virus invasion from the outset. Since, by definition, induced immunity is stimulated fol-

lowing initial virus invasion, the rate of induced antiviral acquisition (r) is not incorporated into the

equation for R0; while induced immune processes can control virus after initial invasion, they cannot

prevent it from occurring to begin with. In cases of fully induced or absent immunity ("¼ 0), the R0

equation thus reduces to a form typical of the classic SEIR model:

R0 ¼
bs b��ð Þ

b aþ�ð Þ sþ�ð Þ
(7)

At equilibrium, the theoretical, mean field model demonstrates one of three infection states:

endemic equilibrium, stable limit cycles, or no infection (Figure 2). Respectively, these states approx-

imate the persistent infection, virus-induced epidemic extinction, and immune-mediated epidemic

extinction phenotypes previously witnessed in tissue culture experiments (Figure 1). Theoretically,

endemic equilibrium is maintained when new infections are generated at the same rate at which

infections are lost, while limit cycles represent parameter space under which infectious and suscepti-

ble populations are locked in predictable oscillations. Endemic equilibria resulting from cellular

regeneration (i.e. births) have been described in vivo for HIV (Coffin, 1995) and in vitro for herpesvi-

rus plaque assays (Howat et al., 2006), but, because they so closely approach zero, true limit cycles

likely only occur theoretically, instead yielding stochastic extinctions in empirical time series.

Bifurcation analysis of our mean field model revealed that regions of no infection (pathogen

extinction) were bounded at lower threshold (Branch point) values for b, below which the pathogen

was unable to invade. We found no upper threshold to invasion for b under any circumstances (i.e. b

high enough to drive pathogen-induced extinction), but high b values resulted in Hopf bifurcations,

which delineate regions of parameter space characterized by limit cycles. Since limit cycles so closely

approach zero, high bs recovered in this range would likely produce virus-induced epidemic extinc-

tions under experimental conditions. Under more robust representations of immunity, with higher

values for either or both induced (r) and constitutive (") rates of antiviral acquisition, Hopf bifurca-

tions occurred at increasingly higher values for b, meaning that persistent infections could establish

at higher viral transmission rates (Figure 2). Consistent with our derivation for R0, we found that the

Branch point threshold for viral invasion was independent of changes to the induced immune param-

eter (r) but saturated at high values of " that characterize highly constitutive immunity (Figure 3).

We next fit our theoretical model by least squares to each cell line-virus combination, under

absent, induced, and constitutive assumptions of immunity. In general, best fit models recapitulated

expected outcomes based on the immune phenotype of the cell line in question, as described in the

general literature (Table 1; Supplementary file 4). The absent immune model offered the most

accurate approximation of IFN-deficient Vero cell time series, the induced immune model best
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recovered the RoNi/7.1 cell trials, and, in most cases, the constitutive immune model most closely

recaptured infection dynamics across constitutively IFN-a-expressing PaKiT01 cell lines (Figure 1,

Figure 1—figure supplements 4–5, Supplementary file 4). Ironically, the induced immune model

offered a slightly better fit than the constitutive to rVSV-MARV infections on the PaKiT01 cell line

(the one cell line-virus combination for which we know a constitutively antiviral cell-receptor incom-

patibility to be at play). Because constitutive immune assumptions can prohibit pathogen invasion

(R0<1), model fits to this time series under constitutive assumptions were handicapped by overesti-

mations of ", which prohibited pathogen invasion. Only by incorporating an exceedingly rapid rate

of induced antiviral acquisition could the model guarantee that initial infection would be permitted

and then rapidly controlled.

ε = 0 ε = 0.0001 ε = 0.0025

0 0.1 0.2 0.3 0 0.1 0.2 0.3 0 0.1 0.2 0.3
0

5

10

15

virulence,  α

tr
a

n
s
m

is
s
io

n
, 

 β

endemic equilibrium

limit cycles

no infection

Branch

Hopf

A.

ρ = 0 ρ = 0.1 ρ = 1

0 0.1 0.2 0.3 0 0.1 0.2 0.3 0 0.1 0.2 0.3
0

5

10

15

virulence,  α

tr
a

n
s
m

is
s
io

n
, 

 β

B.

Figure 2. Two parameter bifurcations of the mean field model, showing variation in the transmission rate, b, against variation in the pathogen-induced

mortality rate, a, under diverse immune assumptions. Panel (A) depicts dynamics under variably constitutive immunity, ranging from absent (left: " ¼ 0)

to high (right: " ¼ :0025). In all panel (A) plots, the rate of induced immune antiviral acquisition (r) was fixed at 0.01. Panel (B) depicts dynamics under

variably induced immunity, ranging from absent (left: r=0) to high (right: r=1). In all panel (B) plots, the rate of constitutive antiviral acquisition (") was

fixed at 0.0001 Branch point curves are represented as solid lines and Hopf curves as dashed lines. White space indicates endemic equilibrium

(persistence), gray space indicates limit cycles, and black space indicates no infection (extinction). Other parameter values for equilibrium analysis were

fixed at: b = .025, m = .001, s = 1/6, c = 0. Special points from bifurcations analyses are listed in Supplementary file 3.
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Robust immunity is linked to rapid within-host virus transmission rates
in fitted models
In fitting our theoretical model to in vitro data, we estimated the within-host virus transmission rate

(b) and the rate(s) of cellular acquisition to antiviral status (r or r + ") (Table 1; Supplementary file

4). Under absent immune assumptions, r and " were fixed at 0 while b was estimated; under induced

immune assumptions, " was fixed at 0 while r and b were estimated; and under constitutive immune

assumptions, all three parameters (r, ", and b) were simultaneously estimated for each cell-virus

combination. Best fit parameter estimates for MOI=0.001 data are visualized in conjunction with b –

r and b – " bifurcations in Figure 4; all general patterns were recapitulated at lower values for b on

MOI=0.0001 trials (Figure 4—figure supplement 1).

As anticipated, the immune absent model (a simple target cell model) offered the best fit to IFN-

deficient Vero cell infections (Figure 4; Table 1; Supplementary file 4). Among Vero cell trials, infec-

tions with rVSV-G produced the highest b estimates, followed by infections with rVSV-EBOV and

rVSV-MARV. Best fit parameter estimates on Vero cell lines localized in the region of parameter
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Figure 3. Two parameter bifurcations of the mean field model, showing variation in the transmission rate, b, against variation in: (A) the induced

immunity rate of antiviral acquisition (r) and (B) the constitutive immunity rate of antiviral acquisition ("). Panels show variation in the extent of immunity,

from absent (left) to high (right). Branch point curves are represented as solid lines and Hopf curves as dashed lines. White space indicates endemic

equilibrium (persistence), gray space indicates limit cycling, and black space indicates no infection (extinction). Other parameter values for equilibrium

analysis were fixed at: b = .025, m = .001, s = 1/6, a = 1/6, c = 0. Special points from bifurcations analyses are listed in Supplementary file 3.
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space corresponding to theoretical limit cycles, consistent with observed virus-induced epidemic

extinctions in stochastic tissue cultures.

In contrast to Vero cells, the induced immunity model offered the best fit to all RoNi/7.1 data,

consistent with reported patterns in the literature and our own validation by qPCR (Table 1; Fig-

ure 1—figure supplement 6; Arnold et al., 2018; Kuzmin et al., 2017; Biesold et al., 2011;

Pavlovich et al., 2018). As in Vero cell trials, we estimated highest b values for rVSV-G infections on

RoNi/7.1 cell lines but here recovered higher b estimates for rVSV-MARV than for rVSV-EBOV. This

reversal was balanced by a higher estimated rate of acquisition to antiviral status (r) for rVSV-EBOV

versus rVSV-MARV. In general, we observed that more rapid rates of antiviral acquisition (either

induced, r, constitutive, ", or both) correlated with higher transmission rates (b). When offset by r, b

values estimated for RoNi/7.1 infections maintained the same amplitude as those estimated for

immune-absent Vero cell lines but caused gentler epidemics and reduced cellular mortality (Fig-

ure 1). RoNi/7.1 parameter estimates localized in the region corresponding to endemic equilibrium

for the deterministic, theoretical model (Figure 4), yielding less acute epidemics which nonetheless

went extinct in stochastic experiments.

Finally, rVSV-G and rVSV-EBOV trials on PaKiT01 cells were best fit by models assuming constitu-

tive immunity, while rVSV-MARV infections on PaKiT01 were matched equivalently by models assum-

ing either induced or constitutive immunity—with induced models favored over constitutive in AIC

comparisons because one fewer parameter was estimated (Figure 1—figure supplements 4–

5; Supplementary file 4). For all virus infections, PaKiT01 cell lines yielded b estimates a full order of

magnitude higher than Vero or RoNi/7.1 cells, with each b balanced by an immune response (either

r, or r combined with ") also an order of magnitude higher than that recovered for the other cell

lines (Figure 4; Table 1). As in RoNi/7.1 cells, PaKiT01 parameter fits localized in the region corre-

sponding to endemic equilibrium for the deterministic theoretical model. Because constitutive

immune processes can actually prohibit initial pathogen invasion, constitutive immune fits to rVSV-

MARV infections on PaKiT01 cell lines consistently localized at or below the Branch point threshold

for virus invasion (R0 ¼ 1). During model fitting for optimization of ", any parameter tests of " values

producing R0<1 resulted in no infection and, consequently, produced an exceedingly poor fit to

infectious time series data. In all model fits assuming constitutive immunity, across all cell lines,

Table 1. Optimized parameters from best fit deterministic model and spatial approximation at MOI = 0.001

Cell line Virus Immune assumption
AIC reduction
from next-best model Antiviral rate

"

[lci – uci] *
r
[lci – uci] *

b
[lci – uci] *

Mean field
R0

Spatial
b

Vero rVSV-G Absent 2 0 0 [0–0] 0 [0–0] 2.44
[1.52–3.36]

8.73 24.418

rVSV-EBOV Absent 2 0 0 [0–0] 0 [0–0] 1.5
[1.06–1.94]

5.42 14.996

rVSV-MARV Absent 2 0 0 [0–0] 0 [0–0] 0.975
[0.558–1.39]

3.45 9.752

RoNi/7.1 rVSV-G Induced 2 7.03 � 10�5 0 [0–0] 0.089
[0–0.432]

2.47
[1.49–3.45]

10.91 24.705

rVSV-EBOV Induced 2.01 2.87 � 10�5 0 [0–0] 0.0363
[0–0.343]

0.685
[0.451–0.919]

3.04 6.849

rVSV-MARV Induced 2 1.40 � 10�5 0 [0–0] 0.0177
[0–0.257]

1.23
[0.917–1.55]

5.48 12.324

PaKiT01 rVSV-G Constitutive 29.9 .00209 0.00602
[0–0.019]

8.26 � 10�8

[0–4.75 � 10�7]
3.45
[1.07–5.84]

6.20 34.516

rVSV-EBOV Constitutive 27.9 .00499 0.0478
[0–0.0958]

4.46 � 10�8

[0–4.37 � 10�7]
34.5
[28.7–40.2]

18.82 344.821

rVSV-MARV Induced 2 .00687 0 [0–0] 13.1
[0–37.9]

3.25
[0–41.3]

8.83 32.452

Improvement in AIC from next best model for same cell line-virus-MOI combination. All d-AIC are reported in Supplementary file 4.
*lci = lower and uci = upper 95% confidence interval. No confidence interval is shown for spatial b which was fixed at 10 times the estimated mean for the

mean field model fits when paired with equivalent values of " and r.

All other parameters were fixed at: b = 0.025 (mean field), 0.15 (spatial); a = 1/6; c = 0; m = 1/121 (Vero), 1/191 (RoNi/7.1), and 1/84 (PaKiT01).
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parameter estimates for r and " traded off, with one parameter optimized at values approximating

zero, such that the immune response was modeled as almost entirely induced or entirely constitutive

(Table 1; Supplementary file 4). For RoNi/7.1 cells, even when constitutive immunity was allowed,

the immune response was estimated as almost entirely induced, while for rVSV-G and rVSV-EBOV

fits on PaKiT01 cells, the immune response optimized as almost entirely constitutive. For rVSV-MARV

on PaKiT01 cells, however, estimation of r was high under all assumptions, such that any additional
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Figure 4. Best fit parameter estimates for b and r or " from mean-field model fits to MOI=0.001 time series data, atop (A,B) b – r and (C) b – "

bifurcation. Fits and bifurcations are grouped by immune phenotype: (A) absent; (B) induced; (C) constitutive immunity, with cell lines differentiated by

shape (Vero=circles; RoNi/7.1 = triangles; PaKiT01=squares) and viral infections by color (rVSV-G = green, rVSV-EBOV = magenta, rVSV-MARV = blue).

Note that y-axis values are ten-fold higher in panel (C). Branch point curves (solid lines) and Hopf curves (dashed lines) are reproduced from Figure 3.

White space indicates endemic equilibrium (pathogen persistence), gray space indicates limit cycling (virus-induced epidemic extinction), and black

space indicates no infection (immune-mediated pathogen extinction). In panel (A) and (B), " is fixed at 0; in panel (C), r is fixed at 5x10�8 for bifurcation

curves and estimated at 4x10�8 and 8x10�8 for rVSV-EBOV and rVSV-G parameter points, respectively. Other parameter values were fixed at: b = .025,

m = 0.001, s = 1/6, a = 1/6, and c = 0 across all panels. Raw fitted values and corresponding 95% confidence intervals for b, r, and ", background

parameter values, and AIC recovered from model fit, are reported in Supplementary file 4. Parameter fits at MOI=0.0001 are visualized in Figure 4—

figure supplement 1.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Best fit parameter estimates for b and r or � from mean-field model fits to MOI=0.0001 time series data, atop (A,B) b – r and (C)

b – � bifurcation.
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antiviral contributions from " prohibited virus from invading at all. The induced immune model thus

produced a more parsimonious recapitulation of these data because virus invasion was always per-

mitted, then rapidly controlled.

Antiviral cells safeguard live cells against rapid cell mortality to
elongate epidemic duration in vitro
In order to compare the relative contributions of each cell line’s disparate immune processes to epi-

demic dynamics, we next used our mean field parameter estimates to calculate the initial ‘antiviral

rate’—the initial accumulation rate of antiviral cells upon virus invasion for each cell-virus-MOI combi-

nation—based on the following equation:

AntiviralRate ¼ �PEPs� �Ps (8)

where PE was calculated from the initial infectious dose (MOI) of each infection experiment and PS
was estimated at disease-free equilibrium:

PE ¼ 1� e
�MOI (9)

PS ¼
b��ð Þ cþ�ð Þ

b cþ�þ "ð Þ
(10)

Because � and " both contribute to this initial antiviral rate, induced and constitutive immune

assumptions are capable of yielding equally rapid rates, depending on parameter fits. Indeed, under

fully induced immune assumptions, the induced antiviral acquisition rate (r) estimated for rVSV-

MARV infection on PaKiT01 cells was so high that the initial antiviral rate exceeded even that esti-

mated under constitutive assumptions for this cell-virus combination (Supplementary file 4). In real-

ity, we know that NPC1 receptor incompatibilities make PaKiT01 cell lines constitutively refractory to

rVSV-MARV infection (Ng and Chandrab, 2018, Unpublished results) and that PaKiT01 cells also con-

stitutively express the antiviral cytokine, IFN-a. Model fitting results suggest that this constitutive

expression of IFN-a may act more as a rapidly inducible immune response following virus invasion

than as a constitutive secretion of functional IFN-a protein. Nonetheless, as hypothesized, PaKiT01

cell lines were by far the most antiviral of any in our study—with initial antiviral rates estimated sev-

eral orders of magnitude higher than any others in our study, under either induced or constitutive

assumptions (Table 1; Supplementary file 4). RoNi/7.1 cells displayed the second-most-pronounced

signature of immunity, followed by Vero cells, for which the initial antiviral rate was essentially zero

even under forced assumptions of induced or constitutive immunity (Table 1; Supplementary file 4).

Using fitted parameters for b and ", we additionally calculated R0, the basic reproduction number

for the virus, for each cell line-virus-MOI combination (Table 1; Supplementary file 4). We found

that R0 was essentially unchanged across differing immune assumptions for RoNi/7.1 and Vero cells,

for which the initial antiviral rate was low. In the case of PaKiT01 cells, a high initial antiviral rate

under either induced or constitutive immunity resulted in a correspondingly high estimation of b

(and, consequently, R0) which still produced the same epidemic curve that resulted from the much

lower estimates for b and R0 paired with absent immunity. These findings suggest that antiviral

immune responses protect host tissues against virus-induced cell mortality and may facilitate the

establishment of more rapid within-host transmission rates.

Total monolayer destruction occurred in all cell-virus combinations excepting rVSV-EBOV infec-

tions on RoNi/7.1 cells and rVSV-EBOV and rVSV-MARV infections on PaKiT01 cells. Monolayer

destruction corresponded to susceptible cell depletion and epidemic turnover where R-effective (the

product of R0 and the proportion susceptible) was reduced below one (Figure 5). For rVSV-EBOV

infections on RoNi/7.1, induced antiviral cells safeguarded remnant live cells, which birthed new sus-

ceptible cells late in the time series. In rVSV-EBOV and rVSV-MARV infections on PaKiT01 cells, this

antiviral protection halted the epidemic (Figure 5; R-effective <1) before susceptibles fully declined.

In the case of rVSV-EBOV on PaKiT01, the birth of new susceptibles from remnant live cells pro-

tected by antiviral status maintained late-stage transmission to facilitate long-term epidemic persis-

tence. Importantly, under fixed parameter values for the infection incubation rate (s) and infection-

induced mortality rate (a), models were unable to reproduce the longer-term infectious time series
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captured in data from rVSV-EBOV infections on PaKiT01 cell lines without incorporation of cell births,

an assumption adopted in previous modeling representations of IFN-mediated viral dynamics in tis-

sue culture (Howat et al., 2006). In our experiments, we observed that cellular reproduction took

place as plaque assays achieved confluency.

persistent infection virus−induced epidemic extinction immune−mediated epidemic extinction
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Figure 5. Fitted time series of susceptible (green shading) and antiviral (blue shading) cell proportions from the mean field model for rVSV-G, rVSV-

EBOV, and rVSV-MARV infections (columns) on Vero, RoNi/7.1, and PaKiT01 cell lines (rows) at MOI = 0.001. Results are shown for the best fit immune

absent model on Vero cells, induced immunity model on RoNi/7.1 cells and constitutive (rVSV-G and rVSV-EBOV) and induced (rVSV-MARV) immune

models on PaKiT01 cells. Combined live, uninfectious cell populations (S + A + E) are shown in tan shading, with raw live, uninfectious cell data from

Hoechst stains visualized as open circles. The right-hand y-axis corresponds to R-effective (pink solid line) across each time series; R-effective = 1 is a

pink dashed, horizontal line. Panel background corresponds to empirical outcome of the average stochastic cell culture trial (persistent

infection = white; virus-induced epidemic extinction = gray; immune-mediated epidemic extinction = black). Parameter values are listed in

Supplementary file 4 and results for absent/induced/constitutive fitted models across all cell lines in Figure 5—figure supplement 1 (MOI = 0.001)

and Figure 5—figure supplement 2 (MOI = 0.0001).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Figure replicates Figure 5 (main text) but includes all output across mean field model fits assuming (A) absent immunity, (B)

induced immunity, and (C) constitutive immunity.

Figure supplement 2. Figure replicates Figure 5—figure supplement 1 exactly but shows model fits and data for all cell-virus combinations at

MOI = 0.0001.

Figure supplement 3. Spatial model state variable outputs, fit to MOI = 0.001 data only, for all 27 unique cell line - virus - immune assumption

combinations: (A) absent immunity, (B) induced immunity, and (C) constitutive immunity.
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Finally, because the protective effect of antiviral cells is more clearly observable spatially, we con-

firmed our results by simulating fitted time series in a spatially-explicit, stochastic reconstruction of

our mean field model. In spatial simulations, rates of antiviral acquisition were fixed at fitted values

for r and " derived from mean field estimates, while transmission rates (b) were fixed at values ten

times greater than those estimated under mean field conditions, accounting for the intensification of

parameter thresholds permitting pathogen invasion in local spatial interactions (see Materials and

methods; Videos 1–3; Figure 5—figure supplement 3; Supplementary file 5; Webb et al., 2007).

In immune capable time series, spatial antiviral cells acted as ‘refugia’ which protected live cells from

infection as each initial epidemic wave ‘washed’ across a cell monolayer. Eventual birth of new sus-

ceptibles from these living refugia allowed for sustained epidemic transmission in cases where some

infectious cells persisted at later timepoints in simulation (Videos 1–3; Figure 5—figure supplement

3).

Discussion
Bats are reservoirs for several important emerging zoonoses but appear not to experience disease

from otherwise virulent viral pathogens. Though the molecular biological literature has made great

progress in elucidating the mechanisms by which bats tolerate viral infections (Zhou et al., 2016;

Ahn et al., 2019; Xie et al., 2018; Pavlovich et al., 2018; Zhang et al., 2013), the impact of unique

bat immunity on virus dynamics within-host has not been well-elucidated. We used an innovative

combination of in vitro experimentation and within-host modeling to explore the impact of unique

bat immunity on virus dynamics. Critically, we found that bat cell lines demonstrated a signature of

enhanced interferon-mediated immune response, of either constitutive or induced form, which

allowed for establishment of rapid within-host, cell-to-cell virus transmission rates (b). These results

were supported by both data-independent bifurcation analysis of our mean field theoretical model,

as well as fitting of this model to viral infection time series established in bat cell culture. Addition-

ally, we demonstrated that the antiviral state induced by the interferon pathway protects live cells

from mortality in tissue culture, resulting in in vitro epidemics of extended duration that enhance the

probability of establishing a long-term persistent infection. Our findings suggest that viruses evolved

in bat reservoirs possessing enhanced IFN capabilities could achieve more rapid within-host trans-

mission rates without causing pathology to their hosts. Such rapidly-reproducing viruses would likely

generate extreme virulence upon spillover to hosts lacking similar immune capacities to bats.

To achieve these results, we first developed a novel, within-host, theoretical model elucidating

the effects of unique bat immunity, then undertook bifurcation analysis of the model’s equilibrium

properties under immune absent, induced, and constitutive assumptions. We considered a cell line

to be constitutively immune if possessing any number of antiviral cells at disease-free equilibrium

but allowed the extent of constitutive immunity to vary across the parameter range for ", the consti-

tutive rate of antiviral acquisition. In deriving the

equation for R0, the basic reproduction number,

which defines threshold conditions for virus inva-

sion of a tissue (R0>1), we demonstrated how

the invasion threshold is elevated at high values

of constitutive antiviral acquisition, ". Constitu-

tive immune processes can thus prohibit patho-

gen invasion, while induced responses, by

definition, can only control infections post-hoc.

Once thresholds for pathogen invasion have

been met, assumptions of constitutive immunity

will limit the cellular mortality (virulence) incurred

at high transmission rates. Regardless of mecha-

nism (induced or constitutive), interferon-stimu-

lated antiviral cells appear to play a key role in

maintaining longer term or persistent infections

by safeguarding susceptible cells from rapid

infection and concomitant cell death.

Video 1. Two hundred hour time series of spatial

stochastic model for rVSV-EBOV infection on 10,000

cell grid for PaKiT01, assuming conditions of absent

immunity: (A) spatial spread of infection, (B) time series

of state variables. Parameter values are listed in

Supplementary file 4.

https://elifesciences.org/articles/48401#video1
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Fitting of our model to in vitro data supported

expected immune phenotypes for different bat cell lines as described in the literature. Simple target

cell models that ignore the effects of immunity best recapitulated infectious time series derived from

IFN-deficient Vero cells, while models assuming induced immune processes most accurately repro-

duced trials derived from RoNi/7.1 (Rousettus aegyptiacus) cells, which possess a standard virus-

induced IFN-response. In most cases, models assuming constitutive immune processes best recre-

ated virus epidemics produced on PaKiT01 (Pteropus alecto) cells, which are known to constitutively

express the antiviral cytokine, IFN-a (Zhou et al., 2016). Model support for induced immune

assumptions in fits to rVSV-MARV infections on PaKiT01 cells suggests that the constitutive IFN-a

expression characteristic of P. alecto cells may represent more of a constitutive immune priming pro-

cess than a perpetual, functional, antiviral defense. Results from mean field model fitting were addi-

tionally confirmed in spatially explicit stochastic simulations of each time series.

As previously demonstrated in within-host models for HIV (Coffin, 1995; Perelson et al., 1996;

Nowak et al., 1995; Bonhoeffer et al., 1997; Ho et al., 1995), assumptions of simple target-cell

depletion can often provide satisfactory approximations of viral dynamics, especially those repro-

duced in simple in vitro systems. Critically, our model fitting emphasizes the need for incorporation

of top-down effects of immune control in order to accurately reproduce infectious time series

derived from bat cell tissue cultures, especially those resulting from the robustly antiviral PaKiT01 P.

alecto cell line. These findings indicate that enhanced IFN-mediated immune pathways in bat reser-

voirs may promote elevated within-host virus replication rates prior to cross-species emergence. We

nonetheless acknowledge the limitations imposed by in vitro experiments in tissue culture, especially

involving recombinant viruses and immortalized cell lines. Future work should extend these cell cul-

ture studies to include measurements of multiple state variables (i.e. antiviral cells) to enhance epide-

miological inference.

The continued recurrence of Ebola epidemics across central Africa highlights the importance of

understanding bats’ roles as reservoirs for virulent zoonotic disease. The past decade has born wit-

ness to emerging consensus regarding the unique pathways by which bats resist and tolerate highly

virulent infections (Brook and Dobson, 2015; Xie et al., 2018; Zhang et al., 2013; Ahn et al.,

2019; Zhou et al., 2016; Ng et al., 2015; Pavlovich et al., 2018). Nonetheless, an understanding of

the mechanisms by which bats support endemic pathogens at the population level, or promote the

evolution of virulent pathogens at the individual level, remains elusive. Endemic maintenance of

infection is a defining characteristic of a pathogen reservoir (Haydon et al., 2002), and bats appear

to merit such a title, supporting long-term persistence of highly transmissible viral infections in iso-

lated island populations well below expected critical community sizes (Peel et al., 2012). Research-

ers debate the relative influence of population-level and within-host mechanisms which might

explain these trends (Plowright et al., 2016), but increasingly, field data are difficult to reconcile

without acknowledgement of a role for persistent infections (Peel et al., 2018; Brook et al., 2019).

Video 2. Two hundred hour time series of spatial

stochastic model for rVSV-EBOV infection on 10,000

cell grid for PaKiT01, assuming conditions of induced

immunity: (A) spatial spread of infection, (B) time series

of state variables. Parameter values are listed in

Supplementary file 4.

https://elifesciences.org/articles/48401#video2

Video 3. Two hundred hour time series of spatial

stochastic model for rVSV-EBOV infection on 10,000

cell grid for PaKiT01, assuming conditions of

constitutive immunity: (A) spatial spread of infection, (B)

time series of state variables. Parameter values are

listed in Supplementary file 4.

https://elifesciences.org/articles/48401#video3
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We present general methods to study cross-scale viral dynamics, which suggest that within-host per-

sistence is supported by robust antiviral responses characteristic of bat immune processes. Viruses

which evolve rapid replication rates under these robust antiviral defenses may pose the greatest haz-

ard for cross-species pathogen emergence into spillover hosts with immune systems that differ from

those unique to bats.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Cell line (Vero) Kidney (normal,
epithelial, adult)

ATCC CCL-81

Cell line
(Rousettus aegyptiacus)

Kidney (normal,
epithelial, adult)

(Biesold et al., 2011;
Kühl et al., 2011)

RoNi/7.1

Cell line
(Pteropus alecto)

Kidney (normal,
epithelial, adult)

(Crameri et al., 2009) PaKiT01

Virus strain Replication competent,
recombinant vesicular
stomatitis Indiana
virus expressing eGFP

(Miller et al., 2012;
Wong et al., 2010)

rVSV-G

Virus strain Replication competent,
recombinant vesicular
stomatitis Indiana
virus expressing
eGFP and EBOV GP
in place of VSV G

(Miller et al., 2012;
Wong et al., 2010)

rVSV-EBOV

Virus strain Replication competent,
recombinant vesicular
stomatitis Indiana
virus expressing
eGFP and MARV GP
in place of VSV G

(Miller et al., 2012;
Wong et al., 2010)

rVSV-MARV

Reagent Hoechst 33342
Fluorescent Stain

ThermoFisher cat #: 62249

Reagent L-Glutamine Solution ThermoFisher cat #: 25030081

Reagent Gibco HEPES ThermoFisher cat #: 15630080

Reagent iTaq Universal SYBR
Green Supermix

BioRad cat #: 1725120

Commercial
assay or kit

Quick RNA Mini Prep Kit Zymo cat #:
R1054

Commercial
assay or kit

Invitrogen Superscript III
cDNA Synthesis Kit

ThermoFisher cat #: 18080051

Software MatCont (version 2.2) (Dhooge et al., 2008) MatCont

R R version 3.6.0 (R Development
Core Team, 2019)

R

*Note that primers for R. aegyptiacus and P. alecto b-Actin, IFN-a, and IFN-b genes are listed in the Supplementary file 6.

Cell culture experiments
Cells
All experiments were carried out on three immortalized mammalian kidney cell lines: Vero (African

green monkey), RoNi/7.1 (Rousettus aegyptiacus) (Kühl et al., 2011; Biesold et al., 2011) and

PaKiT01 (Pteropus alecto) (Crameri et al., 2009). The species identifications of all bat cell lines was

confirmed morphologically and genetically in the publications in which they were originally described

(Kühl et al., 2011; Biesold et al., 2011; Crameri et al., 2009). Vero cells were obtained from

ATCC.
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Monolayers of each cell line were grown to 90% confluency (~9�105 cells) in 6-well plates. Cells

were maintained in a humidified 37 ˚C, 5% CO2 incubator and cultured in Dulbecco’s modified Eagle

medium (DMEM) (Life Technologies, Grand Island, NY), supplemented with 2% fetal bovine serum

(FBS) (Gemini Bio Products, West Sacramento, CA), and 1% penicillin-streptomycin (Life Technolo-

gies). Cells were tested monthly for mycoplasma contamination while experiments were taking

place; all cells assayed negative for contamination at every testing.

Previous work has demonstrated that all cell lines used are capable of mounting a type I IFN

response upon viral challenge, with the exception of Vero cells, which possess an IFN-b deficiency

(Desmyter et al., 1968; Rhim et al., 1969; Emeny and Morgan, 1979). RoNi/7.1 cells have been

shown to mount idiosyncratic induced IFN defenses upon viral infection (Pavlovich et al., 2018;

Kuzmin et al., 2017; Arnold et al., 2018; Kühl et al., 2011; Biesold et al., 2011), while PaKiT01

cells are known to constitutively express the antiviral cytokine, IFN-a (Zhou et al., 2016). This work

is the first documentation of IFN signaling induced upon challenge with the particular recombinant

VSVs outlined below. We verified known antiviral immune phenotypes via qPCR. Results were consis-

tent with the literature, indicating a less pronounced role for interferon defense against viral infec-

tion in RoNi/7.1 versus PaKiT01 cells.

Viruses
Replication-capable recombinant vesicular stomatitis Indiana viruses, expressing filovirus glycopro-

teins in place of wild type G (rVSV-G, rVSV-EBOV, and rVSV-MARV) have been previously described

(Wong et al., 2010; Miller et al., 2012). Viruses were selected to represent a broad range of antici-

pated antiviral responses from host cells, based on a range of past evolutionary histories between

the virus glycoprotein mediating cell entry and the host cell’s entry receptor. These interactions

ranged from the total absence of evolutionary history in the case of rVSV-G infections on all cell lines

to a known receptor-level cell entry incompatibility in the case of rVSV-MARV infections on PaKiT01

cell lines.

To measure infectivities of rVSVs on each of the cell lines outlined above, so as to calculate the

correct viral dose for each MOI, NH4Cl (20 mM) was added to infected cell cultures at 1–2 hr post-

infection to block viral spread, and individual eGFP-positive cells were manually counted at 12–14 hr

post-infection.

Innate immune phenotypes via qPCR of IFN genes
Previously published work indicates that immortalized kidney cell lines of Rousettus aegyptiacus

(RoNi/7.1) and Pteropus alecto (PaKiT01) exhibit different innate antiviral immune phenotypes

through, respectively, induced (Biesold et al., 2011; Pavlovich et al., 2018; Kühl et al., 2011;

Arnold et al., 2018) and constitutive (Zhou et al., 2016) expression of type I interferon genes. We

verified these published phenotypes on our own cell lines infected with rVSV-G, rVSV-EBOV, and

rVSV-MARV via qPCR of IFN-a and IFN-b genes across a longitudinal time series of infection.

Specifically, we carried out multiple time series of infection of each cell line with each of the

viruses described above, under mock infection conditions and at MOIs of 0.0001 and 0.001—with

the exception of rVSV-MARV on PaKiT01 cell lines, for which infection was only performed at

MOI = 0.0001 due to limited viral stocks and the extremely low infectivity of this virus on this cell

line (thus requiring high viral loads for initial infection). All experiments were run in duplicate on 6-

well plates, such that a typical plate for any of the three viruses had two control (mock) wells, two

MOI = 0.0001 wells and two MOI = 0.001 wells, excepting PaKiT01 plates, which had two control

and four MOI = 0.0001 wells at a given time. We justify this PaKiT01 exemption through the expec-

tation that IFN-a expression is constitutive for these cells, and by the assumption that any expression

exhibited at the lower MOI should also be present at the higher MOI.

For these gene expression time series, four 6-well plates for each cell line–virus combination were

incubated with virus for one hour at 37 ˚C. Following incubation, virus was aspirated off, and cell

monolayers were washed in PBS, then covered with an agar plaque assay overlay to mimic condi-

tions under which infection trials were run. Plates were then harvested sequentially at timepoints of

roughly 5, 10, 15, and 20 hr post-infection (exact timing varied as multiple trials were running simul-

taneously). Upon harvest of each plate, agar overlay was removed, and virus was lysed and RNA

extracted from cells using the Zymo Quick RNA Mini Prep kit, according to the manufacturer’s
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instructions and including the step for cellular DNA digestion. Post-extraction, RNA quality was veri-

fied via nanodrop, and RNA was converted to cDNA using the Invitrogen Superscript III cDNA syn-

thesis kit, according to the manufacturer’s instructions. cDNA was then stored at 4 ˚C and as a

frozen stock at �20 ˚C to await qPCR.

We undertook qPCR of cDNA to assess expression of the type I interferon genes, IFN-a and IFN-

b, and the housekeeping gene, b-Actin, using primers previously reported in the literature

(Supplementary file 6). For qPCR, 2 ml of each cDNA sample was incubated with 7 ml of deionized

water, 1 ml of 5 UM forward/reverse primer mix and 10 ml of iTaq Universal SYBR Green, then cycled

on a QuantStudio3 Real-Time PCR machine under the following conditions: initial denaturation at 94

˚C for 2 min followed by 40 cycles of: denaturation at 95 ˚C (5 s), annealing at 58 ˚C (15 s), and exten-

sion at 72 ˚C (10 s).

We report simple d-Ct values for each run, with raw Ct of the target gene of interest (IFN-a or

IFN-b) subtracted from raw Ct of the b-Actin housekeeping gene in Figure 1—figure supplement 6.

Calculation of fold change upon viral infection in comparison to mock using the d-d-Ct method

(Livak and Schmittgen, 2001) was inappropriate in this case, as we wished to demonstrate constitu-

tive expression of IFN-a in PaKiT01 cells, whereby data from mock cells was identical to that pro-

duced from infected cells.

Plaque assays and time series imaging
After being grown to ~90% confluency, cells were incubated with pelleted rVSVs expressing eGFP

(rVSV-G, rVSV-EBOV, rVSV-MARV). Cell lines were challenged with both a low (0.0001) and high

(0.001) multiplicity of infection (MOI) for each virus. In a cell monolayer infected at a given MOI (m),

the proportion of cells (P), infected by k viral particles can be described by the Poisson distribution:

P kð Þ ¼ e
�m

m
k

k!
, such that the number of initially infected cells in an experiment equals: 1� e

�m. We

assumed that a ~90% confluent culture at each trial’s origin was comprised of ~9x105 cells and con-

ducted all experiments at MOIs of 0.0001 and 0.001, meaning that we began each trial by introduc-

ing virus to, respectively, ~81 or 810 cells, representing the state variable ‘E’ in our theoretical

model. Low MOIs were selected to best approximate the dynamics of mean field infection and limit

artifacts of spatial structuring, such as premature epidemic extinction when growing plaques collide

with plate walls in cell culture.

Six-well plates were prepared with each infection in duplicate or triplicate, such that a control

well (no virus) and 2–3 wells each at MOI 0.001 and 0.0001 were incubated simultaneously on the

same plate. In total, we ran between 18 and 39 trials at each cell-virus-MOI combination, excepting

r-VSV-MARV infections on PaKiT01 cells at MOI = 0.001, for which we ran only eight trials due to the

low infectivity of this virus on this cell line, which required high viral loads for initial infection. Cells

were incubated with virus for one hour at 37 ˚C. Following incubation, virus was aspirated off, and

cell monolayers were washed in PBS, then covered with a molten viscous overlay (50% 2X MEM/L-

glutamine; 5% FBS; 3% HEPES; 42% agarose), cooled for 20 min, and re-incubated in their original

humidified 37 ˚C, 5% CO2 environment.

After application of the overlay, plates were monitored periodically using an inverted fluores-

cence microscope until the first signs of GFP expression were witnessed (~6–9.5 hr post-infection,

depending on the cell line and virus under investigation). From that time forward, a square subset of

the center of each well (comprised of either 64- or 36-subframes and corresponding to roughly 60%

and 40% of the entire well space) was imaged periodically, using a CellInsight CX5 High Content

Screening (HCS) Platform with a 4X air objective (ThermoFisher, Inc, Waltham, MA). Microscope set-

tings were held standard across all trials, with exposure time fixed at 0.0006 s for each image. One

color channel was imaged, such that images produced show GFP-expressing cells in white and non-

GFP-expressing cells in black (Figure 1—figure supplement 1).

Wells were photographed in rotation, as frequently as possible, from the onset of GFP expression

until the time that the majority of cells in the well were surmised to be dead, GFP expression could

no longer be detected, or early termination was desired to permit Hoechst staining.

In the case of PaKiT01 cells infected with rVSV-EBOV, where an apparently persistent infection

established, the assay was terminated after 200+ hours (8+ days) of continuous observation. Upon

termination of all trials, cells were fixed in formaldehyde (4% for 15 min), incubated with Hoechst

stain (0.0005% for 15 min) (ThermoFisher, Inc, Waltham, MA), then imaged at 4X on the CellInsight
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CX5 High Content Screening (HCS) Platform. The machine was allowed to find optimal focus for

each Hoechst stain image. One color channel was permitted such that images produced showed live

nuclei in white and dead cells in black.

Hoechst staining
Hoechst stain colors cellular DNA, and viral infection is thought to interfere with the clarity of the

stain (Dembowski and DeLuca, 2015). As such, infection termination, cell fixation, and Hoechst

staining enables generation of a rough time series of uninfectious live cells (i.e. susceptible + antiviral

cells) to complement the images which produced time series of proportions infectious. Due to uncer-

tainty over the exact epidemic state of Hoechst-stained cells (i.e. exposed but not yet infectious cells

may still stain), we elected to fit our models only to the infectious time series derived from GFP-

expressing images and used Hoechst stain images as a post hoc visual check on our fit only (Figure 5;

Figure 5—figure supplements 1–2).

Image processing
Images recovered from the time series above were processed into binary (‘infectious’ vs. ‘non-infec-

tious’ or, for Hoechst-stained images, ‘live’ vs. ‘dead’) form using the EBImage package (Pau et al.,

2010) in R version 3.6 for MacIntosh, after methods further detailed in Supplementary file 7. Binary

images were then further processed into time series of infectious or, for Hoechst-stained images,

live cells using a series of cell counting scripts. Because of logistical constraints (i.e. many plates of

simultaneously running infection trials and only one available imaging microscope), the time course

of imaging across the duration of each trial was quite variable. As such, we fitted a series of statisti-

cal models to our processed image data to reconstruct reliable values of the infectious proportion of

each well per hour for each distinct trial in all cell line–virus-MOI combinations (Figure 1—figure

supplements 2–3), as well as for declining live cell counts from control well data derived from the

Hoestch time series (Supplementary file 1; Supplementary file 7; Figure 1—figure supplement 7).

All original and processed images, image processing and counting code, and resulting time series

data are freely available for download at the following FigShare repository: DOI: 10.6084/m9.fig-

share.8312807.

Mean field model
Theoretical model details
To derive the expression for R0, the basic pathogen reproductive number in vitro, we used Next

Generation Matrix (NGM) techniques (Diekmann et al., 1990; Heffernan et al., 2005), employing

Wolfram Mathematica (version 11.2) as an analytical tool. R0 describes the number of new infections

generated by an existing infection in a completely susceptible host population; a pathogen will

invade a population when R0>1 (Supplementary file 2). We then analyzed stability properties of the

system, exploring dynamics across a range of parameter spaces, using MatCont (version 2.2)

(Dhooge et al., 2008) for Matlab (version R2018a) (Supplementary file 3).

Theoretical model fitting
The birth rate, b, and natural mortality rate, m, balance to yield a population-level growth rate, such

that it is impossible to estimate both b and m simultaneously from total population size data alone.

As such, we fixed b at. 025 and estimated m by fitting an infection-absent version of our mean field

model to the susceptible time series derived via Hoechst staining of control wells for each of the

three cell lines (Figure 1—figure supplement 7). This yielded a natural mortality rate, m, correspond-

ing to a lifespan of approximately 121, 191, and 84 hours, respectively, for Vero, RoNi/7.1, and

PaKiT01 cell lines (Figure 1—figure supplement 7). We then fixed the virus incubation rate, s, as

the inverse of the shortest observed duration of time from initial infection to the observation of the

first infectious cells via fluorescent microscope for all nine cell line – virus combinations (ranging 6 to

9.5 hours). We fixed a, the infection-induced mortality rate, at 1/6, an accepted standard for general

viral kinetics (Howat et al., 2006), and held c, the rate of antiviral cell regression to susceptible sta-

tus, at 0 for the timespan (<200 hours) of the experimental cell line infection trials.

We estimated cell line–virus-MOI-specific values for b, r, and " by fitting the deterministic output

of infectious proportions in our mean field model to the full suite of statistical outputs of all trials for
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each infected cell culture time series (Figure 1—figure supplements 2–3). Fitting was performed by

minimizing the sum of squared differences between the deterministic model output and cell line–

virus-MOI-specific infectious proportion of the data at each timestep. We optimized parameters for

MOI = 0.001 and 0.0001 simultaneously to leverage statistical power across the two datasets, esti-

mating a different transmission rate, b, for trials run at each infectious dose but, where applicable,

estimating the same rates of r and " across the two time series. We used the differential equation

solver lsoda() in the R package deSolve (Soetaert et al., 2010) to obtain numerical solutions for the

mean field model and carried out minimization using the ‘Nelder-Mead’ algorithm of the optim()

function in base R. All model fits were conducted using consistent starting guesses for the parame-

ters, b (b = 3), and where applicable, r (r = 0.001) and " (" = 0.001). In the case of failed fits or indef-

inite hessians, we generated a series of random guesses around the starting conditions and

continued estimation until successful fits were achieved.

All eighteen cell line–virus-MOI combinations of data were fit by an immune absent (" = r = 0)

version of the theoretical model and, subsequently, an induced immunity (" = 0; r >0) and constitu-

tive immunity (" >0; r >0) version of the model. Finally, we compared fits across each cell line–virus-

MOI combination via AIC. In calculating AIC, the number of fitted parameters in each model (k) var-

ied across the immune phenotypes, with one parameter (b) estimated for absent immune assump-

tions, two (b and r) for induced immune assumptions, and three (b, r, and ") for constitutive immune

assumptions. The sample size (n) corresponded to the number of discrete time steps across all

empirical infectious trials to which the model was fitted for each cell-line virus combination. All fitting

and model comparison scripts are freely available for download at the following FigShare repository:

DOI: 10.6084/m9.figshare.8312807.

Spatial model simulations
Finally, we verified all mean field fits in a spatial context, in order to more thoroughly elucidate the

role of antiviral cells in each time series. We constructed our spatial model in C++ implemented in R

using the packages Rcpp and RcppArmadillo (Eddelbuettel and Francois, 2011; Eddelbuettel and

Sanderson, 2017). Following Nagai and Honda (2001) and Howat et al. (2006), we modeled this

system on a two-dimensional hexagonal lattice, using a ten-minute epidemic timestep for cell state

transitions. At the initialization of each simulation, we randomly assigned a duration of natural life-

span, incubation period, infectivity period, and time from antiviral to susceptible status to all cells in

a theoretical monolayer. Parameter durations were drawn from a normal distribution centered at the

inverse of the respective fixed rates of m, s, a, and c, as reported with our mean field model. Transi-

tions involving the induced (r) and constitutive (") rates of antiviral acquisition were governed proba-

bilistically and adjusted dynamically at each timestep based on the global environment. As such, we

fixed these parameters at the same values estimated in the mean field model, and multiplied both r

and " by the global proportion of, respectively, exposed and susceptible cells at a given timestep.

In contrast to antiviral acquisition rates, transitions involving the birth rate (b) and the transmission

rate (b) occurred probabilistically based on each cell’s local environment. The birth rate, b, was multi-

plied by the proportion of susceptible cells within a six-neighbor circumference of a focal dead cell,

while b was multiplied by the proportion of infectious cells within a thirty-six neighbor vicinity of a

focal susceptible cell, thus allowing viral transmission to extend beyond the immediate nearest-

neighbor boundaries of an infectious cell. To compensate for higher thresholds to cellular persis-

tence and virus invasion which occur under local spatial conditions (Webb et al., 2007), we increased

the birth rate, b, and the cell-to-cell transmission rate, b, respectively, to six and ten times the values

used in the mean field model (Supplementary file 4). We derived these increases based on the

assumption that births took place exclusively based on pairwise nearest-neighbor interactions (the

six immediately adjacent cells to a focal dead cell), while viral transmission was locally concentrated

but included a small (7.5%) global contribution, representing the thirty-six cell surrounding vicinity of

a focal susceptible. We justify these increases and derive their origins further in Supplementary file

5.

We simulated ten stochastic spatial time series for all cell-virus combinations under all three

immune assumptions at a population size of 10,000 cells and compared model output with data in

Figure 5—figure supplement 3. Spatial model code is available for public access at the following

FigShare repository: DOI: 10.6084/m9.figshare.8312807.
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Bangham CR. 1995. Antigenic oscillations and shifting immunodominance in HIV-1 infections. Nature 375:606–
611. DOI: https://doi.org/10.1038/375606a0, PMID: 7791879

Nowak MA, Bonhoeffer S, Hill AM, Boehme R, Thomas HC, McDade H. 1996. Viral dynamics in hepatitis B virus
infection. PNAS 93:4398–4402 . DOI: https://doi.org/10.1073/pnas.93.9.4398

Nowak MA, May RM. 2000. Virus Dynamics: Mathematical Principles of Immunology and Virology. Oxford:
Oxford University Press.

Pau G, Fuchs F, Sklyar O, Boutros M, Huber W. 2010. EBImage–an R package for image processing with
applications to cellular phenotypes. Bioinformatics 26:979–981. DOI: https://doi.org/10.1093/bioinformatics/
btq046, PMID: 20338898

Pavlovich SS, Lovett SP, Koroleva G, Guito JC, Arnold CE, Nagle ER, Kulcsar K, Lee A, Thibaud-Nissen F, Hume
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