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Peroxisome proliferator-activated receptor (PPAR) group includes three isoforms encoded by PPARG, PPARA, and PPARD genes.
High concentrations of PPARs are found in parts of the brain linked to anxiety development, including hippocampus and
amygdala. Among three PPAR isoforms, PPARG demonstrates the highest expression in CNS, where it can be found in
neurons, astrocytes, and glial cells. Herein, the highest PPARG expression occurs in amygdala. However, little is known
considering possible connections between PPARs and anxiety behavior. We reviewed possible connections between PPARs and
anxiety. We used the Pathway Studio software (Elsevier). Signal pathways were created according to previously developed
algorithms. SNEA was performed in Pathway Studio. Current study revealed 14 PPAR-regulated proteins linked to anxiety.
Possible mechanism of PPAR involvement in neuroinflammation protection is proposed. Signal pathway reconstruction and
reviewing aimed to reveal possible connection between PPARG and CCK-ergic system was conducted. Said analysis revealed
that PPARG-dependent regulation of MME and ACE peptidase expression may affect levels of nonhydrolysed, i.e., active
CCK-4. Impairments in PPARG regulation and following MME and ACE peptidase expression impairments in amygdala
may be the possible mechanism leading to pathological anxiety development, with brain CCK-4 accumulation being a key
link. Literature data analysis and signal pathway reconstruction and reviewing revealed two possible mechanisms of peroxisome
proliferator-activated receptors involvement in pathological anxiety: (1) cytokine expression and neuroinflammation mechanism
and (2) regulation of peptidases targeted to anxiety-associated neuropeptides, primarily CCK-4, mechanism.

1. Introduction

1.1. Anxiety and Anxiety Disorders. Anxiety disorders
(including generalized anxiety disorders or panic disorders)
are the most widespread mental diseases which are at the
same time difficult to treat [1, 2]. Main characteristic of panic
disorder is presence of repetitive sudden panic attacks [3].
According to large scale surveys, percentage of population
suffering from the anxiety disease throughout lifetime is up
to 33.7% [4, 5].

Many researchers report that anxiety disorders cause
even more severe decrease in patient’s quality of life and
psychosocial functions than other chronic diseases including
diabetes, cardiovascular diseases, and lung diseases [6–8].

Both environmental factors and genetic factors are believed
to be involved in the development of panic disorders [9, 10].

Last decade studies showed that anxiety and anxiety
disorder are associated with amygdala functioning and
various types of its dysfunction that lead to a decrease in
its activity [11–15]. Hypothalamus is also often associated
with anxiety [16, 17]. Thus, it was shown that the anorex-
igenic neuropeptide CCK4 is able to directly interact with
the hypothalamus [18].

Most modern studies of the molecular basis underlying
F40-F48 series (ICD-10) mental disorders focus on polymor-
phisms in genes encoding the main neurotransmitter system
proteins, i.e., catecholamine and GABAergic [19]. However,
it is already clear that they are not the primary link in the fine
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regulation of the formation, severity, and direction of anxious
emotions.

1.2. Peroxisome Proliferator-Activated Receptors. Peroxisome
proliferator-activated receptor (PPAR) subfamily belongs to
nuclear receptor family. Three isoforms encoded by individ-
ual genes are known: PPARγ, PPARα, and PPARδ. PPARs
are ligand-dependent transcription factors that regulate tar-
get gene expression by binding to specific peroxisome prolif-
erator response elements (PPREs) in the enhancer sites of
regulated genes. Each receptor binds to its PPRE as a hetero-
dimer with a retinoid X receptor (RXR). Upon binding of the
agonist, PPAR conformation changes and stabilizes, after
which transcriptional coactivators contribute to activation
of target genes [20].

The PPARs possess the canonical domain structure com-
mon to other nuclear receptor family members, including the
amino-terminal AF-1 transactivation domain, followed by a
DNA-binding domain and a dimerization and ligand bind-
ing domain with a ligand-dependent transactivation function
AF-2 located at the carboxy-terminal region [21].

PPARs regulate expression of genes actively involved in
lipid and carbohydrate metabolism, vascular homeostasis,
tissue repair, cell proliferation and differentiation, and sexual
dimorphism [22].

PPARs are expressed in almost all mammalian tissues
and organs. The expression patterns of PPARα, PPARβ/δ,
and PPARγ differ, although intersections do occur. A high
expression level of all PPARs is observed in tissues with active
fatty acid metabolism. PPARβ/δ is constitutively expressed
in almost all tissues [22, 23]. PPARγ among all 3 isoforms
has the highest expression in the nervous system, where it
was found in neurons, astrocytes, and glial cells [24]. More-

over, all three PPA receptors are expressed both in amygdala
and in the hypothalamus [24]. PPAR association with vari-
ous diseases is also shown [25]. However, the association
with anxiety is poorly understood.

This study for the first time analyzes the relationship
between PPARs and anxiety. Our results will allow to look
at molecular-genetic basis of anxiety disorders pathogenesis,
underlying mechanisms and related problems from a new
angle.

2. Materials and Methods

We used the Pathway Studio® 9 desktop software with
ResNet® 14 database and web version of the Pathway Studio
software (https://mammalcedfx.pathwaystudio.com) (Else-
vier). Additional search of information was performed by
using PubMed (http://www.ncbi.nlm.nih.gov/pubmed/), Tar-
getInsights (https://demo.elseviertextmining.com/), and Goo-
gle Scholar (https://scholar.google.ru/). Signal pathways were
created according to previously developed algorithms [26].

Search algorithm and workflow scheme are presented in
Figure 1. Detailed description is given along in Results for
better understanding.

3. Results and Discussion

3.1. A Search for Common PPARs and Anxiety Targets. Dur-
ing the first step of our work, we used text-mining and signal-
ing pathway analysis for revealing possible role of PPARs in
the development of anxiety.

We used the Pathway Studio® 9 desktop software with
ResNet® 14 database and web version of the Pathway Studio
software (https://mammalcedfx.pathwaystudio.com) (Elsevier).

Search of Protein-Anxiety links

Search of Protein-PPAR links

Extracted articles are revised

Three schemes are created,
one for each PPAR type

Data is combined into one
overall scheme

Search of Protein-Amygdaloid
links

Links other than CellExpression
are excluded

-Manual step

-Automated step

Extracted articles are revised
manually

Signal Pathway schemes
are designed

Links other than
QuantitativeChange are excluded
Links other than Expression and
PromoterBinding are excluded

Irrelevant or misleading articles
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Figure 1: Workflow used in our study. Description in the text.
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The search algorithm for anxiety-protein-PPAR links
was as follows:

(1) Searching proteins linked to anxiety through concen-
tration change. Linkage type: QuantitativeChange
was used in Pathway Studio. This type allows to
search for proteins with reported concentration alter-
ations in patients with anxiety. Total of 304 proteins
were found

(2) 304 proteins discovered on the previous step were
taken into further analysis by searching linkage
between protein and each of the three PPARs
independently. We had chosen to search for PPAR
connections separately to avoid too complicated
pathways. Linkage types: Expression and Promoter-
Binding were used in Pathway Studio. These two
types imply direct PPAR effect on protein concentra-
tion through promoter binding or other direct inter-
action which makes them the most relevant

(3) On the next step, all the supporting references were
manually revised; at first by reviewing Pathway Stu-
dio text-mined “Sentences” section, and after that, if
necessary, by studying the whole text for additional
details

(4) This analysis resulted in three schemes which include
all the proteins linked to both anxiety and PPARs.
Each scheme was representing one PPAR isoform

(5) Three schemes created on the previous step were
combined into one for better data representation
and reducing number of figures

For describing proteins and their role, search engines
highlighted in Materials and Methods were used.

Thus, lists of proteins with confirmed quantity changes in
anxiety, and proteins connected to PPARs were obtained.
Figure 2 and Table 1 show combined target lists.

3.2. Common Target Descriptions and Possible Underlying
Mechanisms. Only cytokines (IFNG, IL6, and TNF) and vas-
cular endothelial growth factor A (VEGFA) are regulated by
all three PPARs. In most cases, connection to PPARα is
present. In one case, HSD11B2, only connection to PPARD
is present.

Thus, 14 PPAR-regulated proteins with altered concen-
tration in anxiety are known:

3.2.1. BDNF (Brain-Derived Neurotrophic Factor). Protein’s
main function is nerve growth and neuron homeostasis
[27]. Both BDNF polymorphisms and concentration alter-
ations are linked to variety of mental and neurological
diseases [28]. In our case, reduced BDNF product concentra-
tion is observed in both animal models ([29], see supplemen-
tary (available here)) and patients ([30], see supplementary).
The BDNF expression is positively regulated by PPARA
([31], see supplementary) and PPARG ([32], see supplemen-
tary). If PPARs-independent BDNF expression regulation
pathways are unaltered, lower PPARA and PPARG levels
are to be expected as well.

3.2.2. CREB1 (CAMP Responsive Element Binding Protein 1).
This is a transcription factor which induces target gene tran-
scription in response to hormonal stimulation via the cAMP
pathway. This protein is involved in many cellular processes
and is expressed in all tissues (https://www.ncbi.nlm.nih.gov/
gene/1385). CREB1 activity is important for brain neuron
development and maintenance [33, 34]. Thus, its linkage to
mental diseases’ pathogenesis is widely studied [35, 36].
The CREB1 expression is known to be lowered in animal
models of anxiety [37, 38]. PPARA and PPARG activate
CREB1 transcription by binding to its promoter. Exact in-
promoter targets of PPARA are known [39, 40], which points
out its important role on CREB1 regulation. PPARG was
shown to be able to bind to CREB1 promoter bearing certain
nucleotide sequence and block its expression [41]. However,
other mechanisms leading to CREB1 activation along with

Protein
(Transcription factor)

Expression
PromoterBinding
QuantitativeChange

Protein
(Ligand)

Protein

Disease

Figure 2: Common targets of anxiety and PPARs. Legend given on the picture.
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PPARG activation are known, i.e., PKCA (protein kinase
C, alpha) activation with further CREB1 activation [42].
Interestingly, CREB1 activation via cAMP-PKCA signaling
provokes binding of CREB1 to a cAMP responsive element-
like site in PPARG gene promoter region [43] which allows
to speculate of mutual regulation of these factors.

3.2.3. CRP (C-Reactive Protein). This protein is involved in
several host defence-related functions based on its ability to
recognize foreign pathogens and damaged host cells and ini-
tiate their elimination by interacting with humoral and cellu-
lar effector systems in the blood (https://www.ncbi.nlm.nih
.gov/gene/1401). CRP linkage to anxiety was shown in
several studies. Patients with anxiety were shown to have
increased CRP levels [44–46], wherein all authors point out
the alterations in patients’ immune status. This can be
explained by possible interactions between the central ner-
vous system and the immune system in neuropsychiatric dis-
orders. CRP regulation via PPARs is negative in both PPARA
([47, 48], see supplementary) and PPARG ([49, 50], see sup-
plementary) cases. There is no information on PPARD-CRP
interactions. Thus, in case of anxiety, we can observe an

increase of CRP levels despite PPARA and PPARG blocking
it. The reasons may lie in either other CRP activation signal
pathways or tissue effects insofar CRP is expressed in the
liver. This is the only protein in this list which lacks expres-
sion brain regions of interest.

3.2.4. FOS. FOS proteins are members of the transcription
factor complex AP-1. FOS proteins were implicated as cell
proliferation, differentiation, and transformation regulators.
FOS gene is expressed in almost every tissue (https://www
.ncbi.nlm.nih.gov/gene/2353). One of the most thorough
research of this gene is focused on neuronal plasticity
[51, 52]. Animal models of anxiety, fear, and depression
show increased FOS in the brain areas linked to the for-
mation of these behavioral reactions in animals [53–55].
Negative effect of PPARA activation on the FOS expression
is known [56, 57]. It is also known that PPARG regulates
the FOS expression [58–61], but there is no univocal opinion
wherever this regulation is positive or negative. It is most
likely that several signal pathways involving PPARG and
FOS are present. Most of the PPARG-FOS interaction studies
are using osteogenesis models, which makes it impossible to

Table 1: List of 14 anxiety-associated proteins–targets of PPARs.

Protein Full name Functional class PPARs

BDNF Brain derived neurotrophic factor Growth factor
PPARA
PPARG

CREB1 cAMP responsive element binding protein 1 Class bZIP transcription factor
PPARA
PPARG

CRP C-reactive protein Plasma protein PPARA PPARG

FOS FOS proto-oncogene, AP-1 transcription factor subunit Class bZIP transcription factor
PPARA
PPARG

HSD11B2 Hydroxysteroid 11-beta dehydrogenase 2 Steroid metabolism protein PPARD

IFNG Interferon gamma Inflammatory cytokine
PPARA
PPARD
PPARG

IL6 Interleukin 6 Inflammatory cytokine
PPARA
PPARD
PPARG

LEP Leptin Adipokine
PPARD
PPARG

NPY Neuropeptide Y Neuropeptide PPARG

NR3C1 Nuclear receptor subfamily 3 group C member 1 Nuclear steroid hormone receptor family PPARA

PRL Prolactin Glycopeptide hormone (gonadotropins) PPARA

TNF Tumor necrosis factor Inflammatory cytokine/adipokine
PPARA
PPARD
PPARG

TSPO Translocator protein Mitochondrial damage protein PPARA

VEGFA Vascular endothelial growth factor A Growth factor
PPARA
PPARD
PPARG
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speculate about PPARs-FOS-anxiety linkage. This linkage is
the least evidence-supported among this list.

3.2.5. HSD11B2. The corticosteroid 11-beta-dehydrogenase
is a microsomal enzyme complex responsible for the inter-
conversion of glucocorticoid cortisol and its inactive metab-
olite cortisone; this conversion prevents illicit activation of
the mineralocorticoid receptor (https://www.ncbi.nlm.nih
.gov/gene/3291). Cortisol is intricately linked to anxiety as
increases in its concentration correlates with anxiety and its
symptoms [62, 63]. Insofar, as HSD11B2 enzyme is directly
involved in processes related to cortisol, its role is pathogen-
esis of diseases characterized by increased cortisol levels is
important [64]. Animal models with HSD11B2 gene knock-
out have inborn predisposition to increased anxiety [65].
Thus, reduced HSD11B2 activity leads to increased cortisol
and anxiety phenotype development. Main organs expressing
HSD11B2 are the kidneys, intestines, and salivary glands.
Only three of PPAR receptors regulate the HSD11B2 expres-
sion wherein this regulation is negative. PPARD is known to
bind to HSD11B2 promotor in trophoblasts of the placenta
and inhibits its expression [66–68]. We have no knowledge
of studies describing PPARD and HSD11B2 interactions in
other tissues. However, as far as PPARD is expressed in all
tissues, both genes are expressed in the kidney which is the
most interesting organ from the point of cortisol accumula-
tion. Thus, in case of HSD11B2, one of peroxisome
proliferator-activated receptors (PPARD) may be linked to
one of the clinical anxiety manifestations, i.e., increased
cortisol.

3.2.6. IFNG. Interferon gamma is soluble cytokine that is a
member of the type II interferon class, secreted by cells of
both the innate and adaptive immune systems (https://www
.ncbi.nlm.nih.gov/gene/3458). Its expression is limited by
immune system cells. Interferon gamma may modulate anx-
iety and depressive states via its role in brain plasticity [69].
Other study suggests that decreased INFG in patients with
anxiety disorder is not a cause but a result of the disease
[70]. However, all PPARs regulate its expression negatively
via INFG promotor binding and blocking its transcriptional
activity ([71–75], see supplementary). Thus, link between
PPARs and INFG regulation is unequivocal, but determining
if decreased INFG concentration is a disease’s cause, or a
consequence is a subject for further studies. It is possible that
decrease of INFG concentration is a result of prolonged
anxiety.

3.2.7. IL6 (Interleukin 6). This cytokine plays role in inflam-
mation and maturation of B cells; encoded protein was
shown to be an endogenous pyrogen capable of inducing
fever in people with autoimmune diseases or infections
(https://www.ncbi.nlm.nih.gov/gene/3569). Increase of the
IL6 expression in patients with anxiety/depression is well
known [76–80]. However, some studies show decrease of
IL6 levels in states characterized by pathological anxiety
[81, 82]. Thus, IL6 anxiety link is possible but requires
further studies. All three PPARs negatively regulate IL6

([83–85], see supplementary). Further understanding PPARs
and IL6 interaction requires evaluation of IL6 role in anxiety.

3.2.8. LEP. Leptin is secreted by white adipocytes into the cir-
culation and plays a major role in the regulation of energy
homeostasis; it binds to the leptin receptor in the brain,
which activates downstream signaling pathways that inhibit
feeding and promote energy expenditure (https://www.ncbi
.nlm.nih.gov/gene/3952). Leptin concentration is increased
in patients with emotional anxiety and reaches its peak in
conditions of moderate anxiety [86]. Other studies also show
high levels of leptin which correlates with anxiety levels
[87–89]. Leptin administration resulted in dose-dependent
anxiety decrease [86, 90]. This data points out the positive
link between leptin and anxiety. Among three PPARs, two
receptors regulate LEP gene expression, i.e., delta and
gamma. PPARD binds to the LEP promotor and inhibits its
expression [91–93]. Thus, one of the mechanisms of leptin
increase in anxiety may be linked to PPARD and PPARG
decrease.

3.2.9. NPY. Neuropeptide Y is a neuropeptide that is widely
expressed in the central nervous system and influences many
physiological processes, including cortical excitability, stress
response, food intake, circadian rhythms, and cardiovascular
function (https://www.ncbi.nlm.nih.gov/gene/4852). Neuro-
peptide Y deficiency is significantly linked to anxiety devel-
opment in all animals including fish and human ([94–97],
see supplementary). The NPY expression is linked to only
one PPAR—gamma; its positive effect on the NPY expression
is known in arcuate hypothalamus [98]. We can speculate
that NPY decrease may be linked to alterations in PPARG
activation/functioning.

3.2.10. NR3C1. Glucocorticoid receptor can function both as
a transcription factor that binds to glucocorticoid response
elements in the promoters of glucocorticoid responsive genes
to activate their transcription and as a regulator of other tran-
scription factors and involved in inflammatory responses,
cellular proliferation, and differentiation in target tissues
(https://www.ncbi.nlm.nih.gov/gene/2908). Increase of the
NR3C1 expression was linked to anxiety increases in rats
[99]; antagonist administration resulted in reduction of
anxiety-like behavior in rats [100]. Increased glucocorticoid
leads to increased anxiety via activation of receptor NR3C1
[101, 102]. Among all peroxisome proliferator-activated
receptors, only PPARA is linked to the NR3C1 expression
regulation as it reduces it [103–105]. Wherein mutual gene
regulation is known as NR3C1 is capable of activating the
PPARA expression [106]. Thus, PPARA is capable of regulat-
ing NR3C1-dependent anxiety.

3.2.11. PRL. Prolactin is a hormonal growth regulator for
many tissues, including cells of the immune system, essential
for lactation (https://www.ncbi.nlm.nih.gov/gene/5617). An
increase in prolactin levels is associated with anxiety in
women during lactation [107], as well as in paratroopers
before jumping [108]. In roman low-avoidance rats with an
increased level of anxiety, an increased level of the PRL gene
expression in the amygdala was shown [109]. PPARA is the
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only PPAR able of activating the PRL expression [110–112].
It is also noted that gene is not necessarily activated via
PPARA binding to PRL promotor [111, 113]. Thus, one of
the mechanisms leading to the increased PRL in anxiety
may be explained due to PPARA activity.

3.2.12. TNF. Tumor necrosis factor is a multifunctional pro-
inflammatory cytokine that belongs to the tumor necrosis
factor superfamily; it is mainly secreted by macrophages
and involved in the regulation of a wide spectrum of biolog-
ical processes including cell proliferation, differentiation,
apoptosis, lipid metabolism, and coagulation (https://www
.ncbi.nlm.nih.gov/gene/7124). Serum TNF levels are elevated
in patients with anxiety symptoms [114], as well as in
patients with generalized anxiety disorder [115]. TNF knock-
out mice showed a low level of anxiety [116]. Cited works
indicate a reliable association of TNF elevation with anxiety.
All three PPARs block the expression of TNF, as well as the
rest of the cytokines identified in our work ([92, 117–121],
see supplementary for additional links). Thus, the explana-
tion of increased TNF in anxiety patients lays either in the
malfunction/decreased activity of PPARs or in the activation
of another mechanism for regulating the TNF expression.

3.2.13. TSPO. Translocator protein is a key factor in the flow
of cholesterol into mitochondria to permit the initiation of
steroid hormone synthesis and interacts with some benzodi-
azepines (https://www.ncbi.nlm.nih.gov/gene/706). The level
of TSPO was significantly reduced in both patients with anx-
iety and anxiety mice models [122–125] and increased after
treatment [126]. Since the benzodiazepines are used in the
treatment of anxiety and anxiety disorder [127], the associa-
tion of their molecular target TSPO with anxiety is beyond
doubt. The TSPO expression is negatively regulated by
PPARA ([128, 129], see supplementary). It can be assumed
that PPARA activity may adversely affect the development
of anxiety due to a decrease in the TSPO expression.

3.2.14. VEGFA (Vascular Endothelial Growth Factor A). It is
a growth factor which induces proliferation and migration of
vascular endothelial cells; essential for angiogenesis (https://
www.ncbi.nlm.nih.gov/gene/7422). A decrease in VEGFA
concentration in patients with anxiety [130, 131] and a high
VEGFA level accompanying low anxiety [30] were reported.
The VEGFA expression is regulated by all PPARs: delta and
gamma bind to the promoter, activating the translation
([132], see supplementary), alpha, on the contrary, blocks
VEGFA promoter, reducing expression ([133], see supple-
mentary). Thus, activation and blockade of the VEGFA gene
expression are also regulated by transcription factor PPARs.
Since the VEGFA expression is reduced in patients with
increased anxiety, it can be assumed that in this case, both
PPARA activation and a decrease in PPAR delta and gamma
activity may occur. Table 2 summarizes above said.

In our analysis, two groups of proteins are the most
presented:

(i) Inflammatory cytokines—three members (IL6, INFG,
and TNF)

(ii) Transcription factors—three members (CREB1, FOS,
and NR3C1)

Interestingly, all PPARs are linked to the inflammatory
cytokine expression, while only PPARA and PPARG are
involved linked to transcription factor expression. Transcrip-
tional targets of PPARD are involved in immune response
and body homeostasis (HSD11B2, LEP, and VEGFA). It
expresses in all brain tissues at the same level [24], which
indicates the probable absence of its participation in the
development of most behavioral reactions, including anxiety.

3.3. PPARs, Common Target, and Amygdala. Proteins, iden-
tified in the previous step, were reviewed for expression in
amygdaloid:

(1) Amygdaloid was added to the list, and all the
amygdaloid-protein links were extracted

(2) All the links except for CellExpression type were
excluded

(3) All the supporting references were manually revised
at first by reviewing Pathway Studio text-mined
“Sentences” section, and after that, if necessary, by
studying the whole text for additional details

All detected proteins, except for CRP (C-reactive pro-
tein), are expressed in amygdala (Figure 3).

Information about the environment is acquired via sen-
sory organs and is transferred to the thalamus nuclei of the
limbic system and then to the cortical sections of the sensory
analyzer (auditory, visual, tactile cortex):

(i) The limbic system responds to the image that the
brain has perceived and recognized. In particular,

Table 2: Anxiety-associated proteins and PPARs—directions of
regulation.

Target PPARA PPARD PPARG

BDNF ↑ ↑

CREB1 ↓ ↓

CRP ↓ ↓

FOS ↓ │
HSD11B2 ↓

IFNG ↓ ↓ ↓

IL6 ↓ ↓ ↓

LEP ↓ ↓

NPY ↑

NR3C1 ↓

PRL ↑

TNF ↓ ↓ ↓

TSPO ↓

VEGFA ↓ ↑ ↑

↑—positive regulation (increased expression), ↓—negative regulation
(decreased expression), │—exact effect it unclear, empty field—interaction
of this target gene with PPAR is unknown. Italics—decreased expression in
anxiety, bold—increased expression in anxiety.
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amygdala is responsible for the defensive reaction,
fear, and aggression

(ii) The amygdala sends a signal to the prefrontal cortex,
which evaluates the situation. Its main function in
this cascade is to develop a rescue plan in a situation
of perceived danger. This path functions inappropri-
ately in case of phobias, which leads to the develop-
ment of a sense of fear for the stimuli that are not
harmful. The amygdala is a key link in the anxiety
formation; it is known that the groups of cells of the
amygdala are activated when there is fear or aggres-
sion. The central nucleus of the amygdala has direct
connections with the hypothalamus and brain ste-
m—areas also responsible for fear.

Thus, the amygdala is currently defined as the main
part of the brain responsible for the formation of anxiety
and fear [13, 134, 135].

PPARs and retinoid X receptor are expressed in the cen-
tral nervous system. Delta is widely expressed in all parts of
the brain, while alpha and gamma show selective expression:

(i) Gamma is not expressed in the structures of the
olfactory bulb, in the part of the olfactory cortex, part
of the neocortex, some structures of the thalamus,
nuclei of the solitary tract, dorsal motor nuclei of
the vagus, and Purkinje cells

(ii) Alpha is not expressed in the hypothalamus [24]

All 3 isoforms are actively expressed in the basal ganglia
to which amygdala belongs [24, 136, 137]. Thus, PPARs in
high concentration are located in the brain areas involved
in the formation of anxiety, including those that are widely
represented in the hippocampus and amygdala.

3.4. Enrichment Analysis. To further elucidate role of PPARs
in anxiety, we conducted Sub-Network Enrichment Analysis
(SNEA) using the Pathway Studio® software using list of
genes obtained during the first stage of our study. We
found considerable number of pathways/gene sets in almost
every search subgroup (SNEA: for compounds regulators
(branch-drugs), for compounds regulators, for phenotypes

and processes (all), with anatomy, with expression regula-
tors) for every gene associated with anxiety disorder.

Table 3 lists top 10 of 100 substances obtained after the
SNEA Compounds Regulators Enriched analysis. Com-
pound regulators were chosen as the most representative
search subgroup. All these substances (ginsenoside, epineph-
rine, corticosterone, norepinephrine, Li+, serotonin, n-3
polyunsaturated fatty acid, dehydroepiandrosterone), either
have an antistress, antidepressant, neuroprotective, and neu-
rogenic effects or regulate blood pressure, carbohydrate, and
lipid metabolism (according to https://pubchem.ncbi.nlm
.nih.gov/). Some of them are found in cellular membranes
and blood vessel walls. Despite the low Jaccard similarity,
which may be explained by relatively low number of searched
genes (17), according to enrichment analysis, good ratio of
9/10 of Gene Set Seed related to neurological regulation is
observed. This means that 9 substances out of 10 are related
to neurological regulation through underlying pathways.
This result points out the significant role these genes play
in pathogenesis of psychoneurological diseases.

In this set of 10 substances, genes BDNF, FOS, VEGFA,
IFNG, IL6, TNF, and PPAR (A, D, G) are present in 100%
of underlying pathways. PPARG is present in 80% of them,
while PPARA in 70% cases and PPARD in 50%. This ten-
dency is persists in full list of 100 substances obtained after
SNEA Compounds Regulators Enriched analysis with BDNF
presence in 77%; FOS, 76%; VEGFA, 82%; IFNG, 76%; IL6,
96%; TNF, 96%; and PPAR (A, D, G), 78%. Among PPARs,
PPARA is present in 52% and PPARD in 27%; most pre-
sented is PPARG in 71%, wherein only 18% out of 100
substances lack any PPARs in their underlying pathway.

This result is an indirect evidence of PPAR role in the
anxiety development.

3.5. Neuroinflammation, PPARs, and Anxiety. Recently, the
theory of neuroinflammation as the cause of anxiety develop-
ment was discussed [138–141]. We performed a signal path-
way analysis which revealed possible mechanism explaining
the role of PPARs in the development of neuroinflammation
(Figure 4).

Signal pathway schemes were designed manually using
data available in the ResNet database describing links
between objects. Annotated schemes available in the Pathway
Studio software were used as well.

We suggest that ligand-activated PPARs block the
activity of the NF-kappa B family of transcription factors
[142, 143]. Coactivators of PPARs-retinoid-X receptor sub-
family [144] and PPARG coactivator 1 alpha (PPARGC1A)
[145] are also involved in this process. NF-kappa B activates
the transcription of number of proinflammatory cytokines,
including those that change their expression during anxi-
ety, i.e., IL6 [146], TNF [147], and IFNG [148]. Thus,
PPARs normally block the development of neuroinflam-
mation [149, 150].

3.6. Peroxisome Proliferator-Activated Receptor Gamma
(PPARG) and Cholecystokininergic Systems in Anxiety. In
recent years, PPARG was shown to be involved in the devel-
opment of pathological anxiety [151–153]. This surge of

Figure 3: The association of proteins with amygdala. Relation
type—CellExpression.
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research was initiated by Domi et al., whose aim was to study
the role of PPARG in the regulation of GABAergic transmis-
sion [154]. The work revealed the role of PPARG in the
regulation of mood disorders, indicating that weakened
signal transmission can contribute to exacerbation of anx-
iety and the negative effects of stress. Authors suggest that
activation of PPARG may be useful in the treatment of
psychiatric conditions related to stress and, in particular,
anxiety disorders [154].

At the same time, PPARG is most actively expressed in
the amygdala [154–158].

Cholecystokinin (CCK) is a neuropeptide which may be
found in high concentrations throughout the central nervous
system, where it is involved in numerous physiological
functions [159]. The role of CCK, especially its smallest func-

tional peptide, CCK-4, in the induction and maintenance of
anxiety and major depression is well known [160–162]. The
increase in CCK-4 is associated with loss of motivation, anx-
iety, and panic attacks [159, 163, 164].

The amygdala is firmly connected with the cholecystoki-
ninergic system. It was shown that CCK-4 is synthesized and
released into amygdala, hippocampal formation, and cerebral
cortex [165, 166]. Both CCK-4 receptors are expressed in the
amygdala: CCKAR [167, 168] and CCKBR [168, 169].

In this part of the work, we carried out an analysis of sig-
naling pathways in order to identify a possible connection
between the cholecystokininergic system and PPARG.

We used the Pathway Studio® 9 desktop software with
the ResNet®14 database and web version of the Pathway
Studio software (https://mammalcedfx.pathwaystudio.com)

Table 3: Top 10 for compound regulators subnetworks enriched for anxiety disorder-associated genes.

Gene Set Seed Total number of neighbours Overlap Percent overlap P value Jaccard similarity

Ginsenoside 106 11 10 1.97889E-14 0.098214

Alpha-MSH 179 12 6 1.50466E-13 0.065217

Epinephrine 292 13 4 1.50691E-12 0.043919

Corticosterone 510 15 2 2.00908E-12 0.029297

Norepinephrine 412 14 3 3.86353E-12 0.033735

Li+ 418 14 3 4.72452E-12 0.033254

Serotonin 239 12 5 4.9582E-12 0.04918

n-3 Polyunsaturated fatty acid 426 14 3 6.14958E-12 0.032634

Dehydroepiandrosterone 330 13 3 7.35581E-12 0.038922

P value was calculated using Fisher’s exact test. Enrichment analysis that does not include experimental values when calculating enrichment from a list. The
Jaccard similarity index (Jaccard similarity coefficient) compares members for two sets to see which members are shared and which are distinct. It is a
measure of similarity for the two sets of data, with a range from 0% to 100%.

(a) (b)

DiseaseDisease
Functional classFunctional class
Protein (Ligand)Protein (Ligand)

Small moleculeSmall molecule
FunctionalAssociationFunctionalAssociation
BindingBinding
DirectRegulationDirectRegulation
PromoterBindingPromoterBinding
RegulationRegulation

Protein
(Transcription factor)
Protein
(Transcription factor)

Figure 4: The association of PPARs with neuroinflammation. (a) The effect of PPARs on neuroinflammation and the association of
neuroinflammation with anxiety. (b) The signaling pathway of the blockade by activated PPARs of the transcription factor NF-kappa B,
an activator of transcription of cytokines IL6, TNF, and IFNG. The legend in the figure.
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(Elsevier). Signal pathways were created according to the
algorithms we developed [170]. The results are presented in
Figure 5 and are described below.

PPARG and PPARGC1A are involved in MME tran-
scription regulation [171]. Simultaneously, PPARG inhibits
the ACE expression [172].

CCK-4 hydrolysis (Trp-Met-Asp-Phe = WMDF) may be
carried out by two enzymes: membrane metalloendopepti-
dase (MME, also known as NEP, EC 3.4.24.11) and angioten-
sin I converting enzyme (ACE, EC 3.4.15.1) [173]. MME and
ACE cut 2 terminal amino acids (DF) from CCK-4 and
CCK-8 which leads to forming of unfunctional peptides
(or dipeptides WM and DF in case of CCK-4) [174, 175].

Thus, PPARG-related MME and ACE expression regula-
tion affect levels of active nonhydrolysed CCK-4. Dysregula-
tion of PPARG and the following alteration of peptidase
expression in amygdala may be a possible mechanism of path-
ological anxiety development, with a CCK-4 accumulation as a
main cause. This may explain Domi et al. results [154].

4. Conclusions

We examined possible associations of PPARs with anxiety.
An analysis of the data and signaling pathways available in
the literature suggests two mechanisms for the participation
of peroxisome proliferator-activated receptors in the forma-
tion of anxiety: (1) expression of cytokines and neuroinflam-
mation and (2) regulation of the expression of peptidases, the
targets of which are neuropeptides associated with anxiety
(CCK-4 in the first place). Further research in these areas will
help to better understand the role of PPARs in the develop-
ment of anxiety.
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